当前位置: 首页 > news >正文

【人工智能】Python常用库-PyTorch常用方法教程

PyTorch 是一个强大的开源深度学习框架,以其灵活性和动态计算图而广受欢迎。以下是 PyTorch 的详细教程,涵盖从基础到实际应用的使用方法。


1. 安装与导入

1.1 安装 PyTorch

访问 PyTorch 官方网站,根据系统、Python 版本和 CUDA 支持选择安装命令。

常用安装命令:

pip install torch torchvision torchaudio
1.2 导入库
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms

2. PyTorch 基础

2.1 张量(Tensor)

张量是 PyTorch 的核心数据结构,可以看作是一个高维数组。

# 创建张量
a = torch.tensor([1.0, 2.0, 3.0])
b = torch.tensor([4.0, 5.0, 6.0])# 基本运算
c = a + b
print(c)  # 输出 tensor([5., 7., 9.])# 随机张量
random_tensor = torch.rand((2, 3))  # 2行3列随机数
print(random_tensor)

输出结果

tensor([5., 7., 9.])
tensor([[0.9980, 0.2970, 0.5257],[0.8807, 0.0471, 0.7896]])
2.2 自动求导

PyTorch 提供动态计算图支持自动求导。

x = torch.tensor(2.0, requires_grad=True)
y = x**2 + 3*x + 4y.backward()  # 自动求导
print(x.grad)  # 输出 dy/dx = 2*x + 3 = 7.0

输出结果

tensor(7.)

3. 数据加载

PyTorch 提供强大的数据加载功能。

import torchvision.transforms as transforms
from torchvision.datasets import MNIST
from torch.utils.data import DataLoader# 下载并加载 MNIST 数据集
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))])
train_data = MNIST(root='./data', train=True, download=True, transform=transform)
train_loader = DataLoader(train_data, batch_size=32, shuffle=True)

4. 构建神经网络

4.1 使用 nn.Module 构建模型
import torch.nn as nnclass SimpleNN(nn.Module):def __init__(self):super(SimpleNN, self).__init__()self.fc1 = nn.Linear(28 * 28, 128)self.relu = nn.ReLU()self.fc2 = nn.Linear(128, 10)self.softmax = nn.Softmax(dim=1)def forward(self, x):x = x.view(-1, 28 * 28)  # 展平输入x = self.relu(self.fc1(x))x = self.softmax(self.fc2(x))return xmodel = SimpleNN()print(model)

输出结果

SimpleNN((fc1): Linear(in_features=784, out_features=128, bias=True)(relu): ReLU()(fc2): Linear(in_features=128, out_features=10, bias=True)(softmax): Softmax(dim=1)
)

5. 模型训练

5.1 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()  # 交叉熵损失
optimizer = optim.Adam(model.parameters(), lr=0.001)
5.2 训练循环
for epoch in range(5):for images, labels in train_loader:optimizer.zero_grad()  # 梯度清零outputs = model(images)loss = criterion(outputs, labels)  # 计算损失loss.backward()  # 反向传播optimizer.step()  # 更新权重print(f"Epoch {epoch+1}, Loss: {loss.item()}")

完整代码

from torch import nn, optim
import torchvision.transforms as transforms
from torchvision.datasets import MNIST
from torch.utils.data import DataLoaderclass SimpleNN(nn.Module):def __init__(self):super(SimpleNN, self).__init__()self.fc1 = nn.Linear(28 * 28, 128)self.relu = nn.ReLU()self.fc2 = nn.Linear(128, 10)self.softmax = nn.Softmax(dim=1)def forward(self, x):x = x.view(-1, 28 * 28)  # 展平输入x = self.relu(self.fc1(x))x = self.softmax(self.fc2(x))return xmodel = SimpleNN()# 下载并加载 MNIST 数据集
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))])
train_data = MNIST(root='./data', train=True, download=True, transform=transform)
train_loader = DataLoader(train_data, batch_size=32, shuffle=True)criterion = nn.CrossEntropyLoss()  # 交叉熵损失
optimizer = optim.Adam(model.parameters(), lr=0.001)for epoch in range(5):for images, labels in train_loader:optimizer.zero_grad()  # 梯度清零outputs = model(images)loss = criterion(outputs, labels)  # 计算损失loss.backward()  # 反向传播optimizer.step()  # 更新权重print(f"Epoch {epoch + 1}, Loss: {loss.item()}")

输出结果

Epoch 1, Loss: 1.482284665107727
Epoch 2, Loss: 1.4968496561050415
Epoch 3, Loss: 1.5289227962493896
Epoch 4, Loss: 1.4832825660705566
Epoch 5, Loss: 1.5070817470550537

6. 模型评估

6.1 在测试集上评估
test_data = MNIST(root='./data', train=False, transform=transform)
test_loader = DataLoader(test_data, batch_size=32, shuffle=False)correct = 0
total = 0
with torch.no_grad():  # 禁用梯度计算for images, labels in test_loader:outputs = model(images)_, predicted = torch.max(outputs, 1)total += labels.size(0)correct += (predicted == labels).sum().item()print(f"Test Accuracy: {correct / total * 100:.2f}%")

输出结果

Test Accuracy: 10.32%

7. GPU 加速

PyTorch 支持使用 GPU 加速。

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model.to(device)# 将数据也移动到 GPU
for images, labels in train_loader:images, labels = images.to(device), labels.to(device)outputs = model(images)

8. 保存与加载模型

8.1 保存模型
torch.save(model.state_dict(), 'model.pth')
8.2 加载模型
model = SimpleNN()
model.load_state_dict(torch.load('model.pth'))
model.eval()  # 切换到评估模式

9. 实际案例

9.1 CIFAR-10 图像分类
from torch import nn
import torch.nn.functional as F
from torch.utils.data import DataLoader
from torchvision.datasets import CIFAR10
from torchvision.transforms import transforms# CIFAR-10 数据集
transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
train_data = CIFAR10(root='./data', train=True, download=True, transform=transform)
train_loader = DataLoader(train_data, batch_size=32, shuffle=True)class CNN(nn.Module):def __init__(self):super(CNN, self).__init__()self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1)self.pool = nn.MaxPool2d(kernel_size=2, stride=2)self.fc1 = nn.Linear(16 * 16 * 16, 10)def forward(self, x):x = self.pool(F.relu(self.conv1(x)))x = x.view(-1, 16 * 16 * 16)x = self.fc1(x)return xmodel = CNN()
# 后续训练步骤类似

10. PyTorch 优势总结

  1. 动态计算图:支持动态构建与修改模型。
  2. 灵活性:适合研究和开发,易于调试。
  3. 强大的社区支持:广泛的教程、示例和扩展工具。

通过实践,PyTorch 能够帮助用户更好地理解和实现深度学习算法!

http://www.lryc.cn/news/493580.html

相关文章:

  • Android Studio安装TalkX AI编程助手
  • #渗透测试#红蓝攻防#HW#漏洞挖掘#漏洞复现02-永恒之蓝漏洞
  • gitlab自动打包python项目
  • 残差神经网络
  • mini-spring源码分析
  • 黑马程序员Java项目实战《苍穹外卖》Day01
  • uniapp开发支付宝小程序自定义tabbar样式异常
  • python+django5.1+docker实现CICD自动化部署springboot 项目前后端分离vue-element
  • python代码示例(读取excel文件,自动播放音频)
  • 【第十课】Rust并发编程(一)
  • 图形渲染性能优化
  • elasticsearch的索引模版使用方法
  • 论文学习——进化动态约束多目标优化:测试集和算法
  • C++中的volatile关键字
  • linux桌面qt应用程序UI自动化实现之dogtail
  • Hello World C#
  • SAP开发语言ABAP开发入门
  • 应急响应靶机——easy溯源
  • 【前端】vscode报错: 无法加载文件 D:\nodejs\node_global\yarn.ps1,因为在此系统上禁止运行脚本。
  • Spring Web MVC(详解中)
  • Flutter:encrypt插件 AES加密处理
  • Python bytes类型及用法
  • 阅读《基于蒙特卡洛法的破片打击无人机易损性分析》_笔记
  • 【vim】vim怎么把某一列内容复制到另一列
  • IP划分(笔记)
  • 【ChatGPT大模型开发调用】如何获得 OpenAl API Key?
  • 人证合一开启安全认证新时代、C#人证合一接口集成、人脸识别
  • EBS 中 Oracle Payables (AP) 模块的相关集成
  • Flask项目入门—会话技术Cookie和Session
  • 通达OA down存在信息泄露漏洞