当前位置: 首页 > news >正文

【深度学习|特征增强模块】FFN(前馈神经网络)和E_FFN(增强型前馈神经网络)是transformer特征增强的重要组成部分!

【深度学习|特征增强模块】FFN(前馈神经网络)和E_FFN(增强型前馈神经网络)是transformer特征增强的重要组成部分!

【深度学习|特征增强模块】FFN(前馈神经网络)和E_FFN(增强型前馈神经网络)是transformer特征增强的重要组成部分!


文章目录

  • 【深度学习|特征增强模块】FFN(前馈神经网络)和E_FFN(增强型前馈神经网络)是transformer特征增强的重要组成部分!
  • FFN 和 E_FFN 的作用与区别
    • 1. FFN(前馈神经网络)
      • 功能:
      • 过程:
      • 使用场景
      • 代码示例:
    • 2. E_FFN(增强型前馈神经网络)
      • 功能:
      • 过程:
      • 使用场景:
      • 代码示例:
    • 3. FFN 与 E_FFN 的区别
    • 总结
  • 交通运输、机电主题会议
    • 第六届国际科技创新学术交流大会(IAECST 2024) 暨第四届物流系统与交通运输国际学术会议(LSTT 2024)
    • 第四届机电一体化与智能控制国际学术会议(MIC 2024)
    • 2024年智能船舶与机电系统国际学术会议(ICISES 2024)
  • 测绘遥感、地质主题会议
    • 第三届地理信息与遥感技术国际学术会议(GIRST 2024)
    • 2024年遥感技术与图像处理国际学术会议(RSTIP 2024)
  • 数学、力学、物理主题会议
    • 第五届应用力学与机械工程国际学术会议(ICAMME 2024)


在这里插入图片描述
欢迎宝子们点赞、关注、收藏!欢迎宝子们批评指正!
祝所有的硕博生都能遇到好的导师!好的审稿人!好的同门!顺利毕业!

大多数高校硕博生毕业要求需要参加学术会议,发表EI或者SCI检索的学术论文会议论文:
可访问艾思科蓝官网,浏览即将召开的学术会议列表。会议入口:https://ais.cn/u/mmmiUz

FFN 和 E_FFN 的作用与区别

1. FFN(前馈神经网络)

功能:

FFN 是一种基础的全连接前馈神经网络。它由两层全连接层(Linear Layer)和一个激活函数(GELU)组成,通常用于神经网络的中间层进行非线性变换,增加模型的表达能力。

过程:

  • 输入通过第一层全连接层(fc1)将输入的特征维度 in_features 映射 hidden_features。
  • 然后经过激活函数(act),此处使用的是 GELU 激活函数,进行非线性变换。
  • 然后通过第二层全连接层(fc2)将特征维度从 hidden_features 映射回 out_features。
  • 最后,可能会应用 Dropout 来避免过拟合。

使用场景

FFN 在许多深度学习模型中作为基础模块,广泛应用于Transformer架构、MLP(多层感知器)等结构中,主要用于处理非线性关系和高维特征之间的映射。

代码示例:

class FFN(nn.Module):def __init__(self, in_features, hidden_features=None, out_features=None, drop=0.):super(FFN, self).__init__()out_features = out_features or in_featureshidden_features = hidden_features or in_features# 第一层全连接层self.fc1 = nn.Linear(in_features, hidden_features)  # in_features = 512, hidden_features = 128# 激活函数 (使用GELU)self.act = nn.GELU()# 第二层全连接层self.fc2 = nn.Linear(hidden_features, out_features)  # hidden_features = 128, out_features = 512# Dropout层self.drop = nn.Dropout(drop)def forward(self, x):x = self.fc1(x)  # 输入经过第一层x = self.act(x)  # 激活函数x = self.fc2(x)  # 输入经过第二层x = self.drop(x)  # 如果drop值大于0,应用dropoutreturn x

2. E_FFN(增强型前馈神经网络)

功能:

E_FFN 是对 FFN 的增强版本,通过卷积层和批归一化层增强其能力。与 FFN 主要依赖全连接层不同,E_FFN 引入了卷积操作,使其更适合处理空间结构数据(如图像或多维特征)。

过程:

  • fc1 是一个卷积操作(ConvBNReLU),通过 1x1 卷积层将输入的通道数 in_channels 映射到 hidden_channels,并进行批归一化和激活。
  • conv1 和 conv2 是基于输入特征的卷积操作,使用不同的卷积核大小(ksize 和 3x3)进行处理。
  • 最后通过 fc2 将卷积操作的结果映射回 out_features,并通过激活函数(如 ReLU6)进行非线性变换。

使用场景:

E_FFN 是 FFN 的改进版本,特别适用于具有空间特征的任务(如图像处理、语义分割等),因为它使用了卷积操作,可以捕捉空间结构信息和局部特征。

代码示例:

class E_FFN(nn.Module):def __init__(self, in_features, hidden_features=None, out_features=None, ksize=5, act_layer=nn.ReLU6, drop=0.):super(E_FFN, self).__init__()out_features = out_features or in_featureshidden_features = hidden_features or in_featuresself.fc1 = ConvBNReLU(in_channels=in_features, out_channels=hidden_features, kernel_size=1)self.conv1 = ConvBNReLU(in_channels=hidden_features, out_channels=hidden_features, kernel_size=ksize,groups=hidden_features)self.conv2 = ConvBNReLU(in_channels=hidden_features, out_channels=hidden_features, kernel_size=3,groups=hidden_features)self.fc2 = ConvBN(in_channels=hidden_features, out_channels=out_features, kernel_size=1)self.act = act_layer()self.drop = nn.Dropout(drop)def forward(self, x):x = self.fc1(x)x1 = self.conv1(x)x2 = self.conv2(x)x = self.fc2(x1 + x2)x = self.act(x)return x

3. FFN 与 E_FFN 的区别

在这里插入图片描述

总结

  • FFN 是一个基础的前馈神经网络,适用于处理一般的输入数据,如结构化数据或者经过预处理的特征。
  • E_FFN 是对 FFN 的扩展,采用卷积操作使其能够更好地处理具有空间结构的输入数据,适合处理图像、视频或其他具有空间信息的任务。

交通运输、机电主题会议

第六届国际科技创新学术交流大会(IAECST 2024) 暨第四届物流系统与交通运输国际学术会议(LSTT 2024)

  • 12月6-8日,广州
  • 主办单位:IEEE PES智慧楼宇、负载和客户支持系统卫星技术委员会(中国)、华南理工大学、广东省艾思信息化学术交流研究院、艾思科蓝
  • 院士主席团。IEEE出版,IEEE Xplore、EI检索。征集交通运输工程、交通信息与控制、交通规划与管理、载运工具运用工程、隧桥/道路与铁路工程、物流系统与信息化技术、航空/航海/港口水运主题论文

第四届机电一体化与智能控制国际学术会议(MIC 2024)

  • 12月27-29日,南昌
  • 主办单位:华东交通大学
  • 前身为“智慧交通、能源与动力国际学术会议(STEP)”,多位国内外专家报告。多届论文已检索,本届征集机电一体化、智能控制。仪器仪表、电气、航空航天等论文

2024年智能船舶与机电系统国际学术会议(ICISES 2024)

  • 12月27-29日,广州
  • 主办单位:广州航海学院、广东海洋大学、重庆交通大学、集美大学
  • IEEE出版,征集船舶工程、机电工程、控制系统、传感器、3D打印等主题论文。多位学科带头人、学院院长等作主讲报告

测绘遥感、地质主题会议

第三届地理信息与遥感技术国际学术会议(GIRST 2024)

  • 11月29日-12月1日,意大利罗马
  • 主办单位:罗马第三大学
  • 多届IEEE/SPIE出版,完成EI检索。欧洲会议现正征集论文,含地理信息、测量与测绘、遥感等主题论文

2024年遥感技术与图像处理国际学术会议(RSTIP 2024)

  • 11月29-12月1日,大理
  • 支持单位:浙江海洋大学信息工程学院、苏州科技大学地理科学与测绘工程学院、阿卜杜勒阿齐兹国王大学
  • 多位国内外专家报告。征集遥感技术、图像处理技术及其领域应用等主题论文

数学、力学、物理主题会议

第五届应用力学与机械工程国际学术会议(ICAMME 2024)

  • 12月20-22日,长沙
  • 多位国内外专家报告。征集力学、材料建模、机械工程、智能控制、材料力学、机电一体化等主题论文

欢迎宝子们点赞、关注、收藏!欢迎宝子们批评指正!
祝所有的硕博生都能遇到好的导师!好的审稿人!好的同门!顺利毕业!

http://www.lryc.cn/news/491899.html

相关文章:

  • 【Qt】控件7
  • F12抓包14_修改网页图片网页保存到本地
  • 源代码检测,内附实际案例
  • 1138:将字符串中的小写字母转换成大写字母
  • 《C++ 人工智能模型邂逅云平台:集成之路的策略与要点全解析》
  • 【ArcGISPro】Sentinel-2数据处理
  • Unity中的简易TCP服务器/客户端
  • Spring Boot 3.4 正式发布,结构化日志!
  • 技术文档,they are my collection!
  • 详解Qt之QtMath Qt数学类
  • 人工智能与人类:共创未来的新篇章
  • 4.6 JMeter HTTP信息头管理器
  • 非交换几何与黎曼ζ函数:数学中的一场革命性对话
  • 【设计模式】【行为型模式(Behavioral Patterns)】之观察者模式(Observer Pattern)
  • 文件导入-使用java反射修改日期数据
  • 【网络安全设备系列】10、安全审计系统
  • Apache Maven Assembly 插件简介
  • ReentrantLock(可重入锁) Semaphore(信号量) CountDownLatch
  • 计算机网络习题解答--个人笔记(未完)
  • java虚拟机——频繁发生Full GC的原因有哪些?如何避免发生Full GC
  • python学习笔记(12)算法(5)迭代与递归
  • 从零开始:Linux 环境下的 C/C++ 编译教程
  • Rust学习(十):计算机科学简述
  • 【西瓜书】剪枝与样本值处理——预剪枝、后剪枝、连续值、缺失值
  • NLP 1、人工智能与NLP简介
  • 常见线程安全问题之Double Checked Locking
  • Redis(非关系型数据库)的作用 详细解读
  • 互联网视频推拉流EasyDSS视频直播点播平台视频转码有哪些技术特点和应用?
  • python之多元线性回归
  • 学习threejs,使用设置lightMap光照贴图创建阴影效果