当前位置: 首页 > news >正文

Elasticsearch对于大数据量(上亿量级)的聚合如何实现?

大家好,我是锋哥。今天分享关于【Elasticsearch对于大数据量(上亿量级)的聚合如何实现?】面试题。希望对大家有帮助;

Elasticsearch对于大数据量(上亿量级)的聚合如何实现?

1000道 互联网大厂Java工程师 精选面试题-Java资源分享网

在Elasticsearch中,对于大数据量(例如上亿量级的文档)的聚合操作,性能优化和高效实现是关键。聚合操作(aggregation)在数据量大的情况下可能会对系统性能造成较大的压力,因此需要采取多种优化措施来确保聚合操作能够高效地执行。下面是一些常见的优化方法和实现策略。

1. 合理设计索引和映射

索引设计对聚合性能有很大影响。以下是一些最佳实践:

  • 字段类型优化:确保用于聚合的字段类型适当。例如,如果要做数值聚合,确保该字段使用数值类型(如 longdouble 等),而不是 text 类型。对于关键词聚合,确保字段使用 keyword 类型而非 text 类型,这样可以避免不必要的全文索引。

  • 减少字段数目:避免在每个文档中存储不必要的字段,尤其是那些不会用于查询或聚合的字段。可以通过 Elasticsearch 的 source filtering 来减少返回文档的字段。

  • 分片设计:为了提高聚合性能,合理的分片数设置非常重要。如果分片数过多,聚合操作可能会变得低效;如果分片数过少,可能导致每个分片的数据量过大,影响性能。常见的做法是根据数据量调整分片数和副本数,以保证数据均衡分布。

2. 使用 Doc Values 进行聚合

Doc Values 是Elasticsearch为字段提供的优化存储结构,用于高效地执行排序、聚合和脚本计算。对于聚合操作,应该确保聚合字段启用了 doc_values(默认启用)。例如,对于 keyword 和数值字段,doc_values 可以显著提高性能。

对于 text 类型字段,Elasticsearch会自动为其创建 keyword 类型的 doc_values,但如果需要对该字段进行聚合,应该显式地为其定义 keyword 类型映射。

3. 利用分布式聚合

Elasticsearch是分布式的,聚合操作会在多个分片上并行执行。为了更好地处理大数据量,Elasticsearch采用了“分布式聚合”的策略:

  • 聚合结果的局部计算:Elasticsearch首先在每个分片内进行局部聚合,然后将这些结果汇总到协调节点进行最终计算。局部聚合减少了数据传输量,尤其是在大量分片的情况下。

  • 聚合结果的合并:当聚合涉及多个分片时,Elasticsearch会在每个分片内进行局部聚合,然后将所有分片的结果合并成最终的聚合结果。需要注意的是,terms 聚合通常会消耗大量内存,因此如果字段的基数很大,可能需要其他优化手段。

4. 分步聚合与桶排序

对于大数据量的聚合,尤其是涉及大量不同值的字段(如 terms 聚合),可能会消耗大量内存。可以采用以下策略:

  • 分步聚合(composite aggregation)composite 聚合是一个分页式的聚合,可以避免一次性返回大量的桶。在多层次的聚合中,当结果集较大时,可以通过分页查询来逐步获取数据。这种方式可以减少每次聚合的内存消耗。

    示例:

    {"aggs": {"composite_agg": {"composite": {"sources": [{ "region": { "terms": { "field": "region.keyword" } } },{ "product": { "terms": { "field": "product.keyword" } } }]}}}
    }
    

    这种方式可以避免一次性返回所有的聚合结果,而是逐步分页获取每个桶的数据。

  • 桶排序(bucket_sort aggregation):在有大量桶的情况下,可以使用桶排序聚合来限制返回的桶数。通过设置排序条件和分页,减少不必要的数据加载。

5. 优化内存和资源配置

大数据量聚合操作通常需要大量的内存和计算资源,因此合理配置内存和资源也是至关重要的:

  • JVM 堆内存调整:聚合操作消耗大量的内存,特别是在涉及大量桶(如 terms 聚合)的情况下。因此,需要根据节点的硬件资源调整 JVM 堆内存(-Xmx-Xms)。

  • Elasticsearch 内存配置:增加 Elasticsearch 节点的内存可以提升聚合操作的效率,但需要保证物理内存足够。通过合理的节点资源分配,避免节点因内存不足而导致 GC 问题或 OOM(OutOfMemoryError)错误。

  • 避免频繁的 Full GC:确保 JVM 配置和垃圾回收机制能够高效地处理大量内存分配,以减少停顿时间。使用 G1 GC 或 ZGC 等适合大数据量的垃圾回收器。

6. 聚合结果的缓存

对于频繁查询的聚合结果,可以利用 Elasticsearch 的缓存机制来提升查询速度。例如,terms 聚合可以通过适当的缓存策略减少重复计算。在某些情况下,可以考虑使用 caching 来加速查询,尤其是对于某些长期不变的数据。

7. 避免使用过多的聚合层次

嵌套聚合可能会导致计算开销增加,特别是在数据量非常大的情况下。避免过深的聚合嵌套,尽量简化聚合结构。如果需要进行多层次的聚合,可以考虑分批执行聚合,分解为多个查询进行处理。

8. 调优查询并行度

Elasticsearch 的聚合操作会在多个分片上并行执行。在资源允许的情况下,可以适当增加 搜索线程池 的大小,以提高聚合计算的并行度。然而,这也可能导致高 CPU 占用和资源瓶颈,因此需要进行合理配置和调优。

总结

对于大数据量的聚合操作,Elasticsearch提供了多种方式来优化性能,包括合理的索引设计、分布式聚合、分步聚合、内存优化和资源调配等。通过这些手段,可以高效地处理上亿量级的数据聚合请求。具体的优化方案需要根据实际的数据量、硬件配置和查询需求来制定。

http://www.lryc.cn/news/491846.html

相关文章:

  • 深度学习模型:循环神经网络(RNN)
  • 前端---HTML(一)
  • SQL 复杂查询
  • 银河麒麟桌面系统——桌面鼠标变成x,窗口无关闭按钮的解决办法
  • 抓包之使用chrome的network面板
  • 避坑ffmpeg直接获取视频fps不准确
  • 大数据新视界 -- 大数据大厂之 Hive 函数库:丰富函数助力数据处理(上)(11/ 30)
  • 深入解析 Django 中数据删除的最佳实践:以动态管理镜像版本为例
  • 【java】sdkman-java多环境切换工具
  • 11.25c++继承、多态
  • STM32F103外部中断配置
  • 阿里电商大整合,驶向价值竞争新航道
  • 等保测评在云计算方面的应用讲解
  • QML TableView 实例演示 + 可能遇到的一些问题(Qt_6_5_3)
  • SpringBoot(三十九)SpringBoot集成RabbitMQ实现流量削峰添谷
  • 前端 Vue 3 后端 Node.js 和Express 结合cursor常见提示词结构
  • 类和对象(下):点亮编程星河的类与对象进阶之光
  • 42.接雨水
  • 使用Java代码操作Kafka(五):Kafka消费 offset API,包含指定 Offset 消费以及指定时间消费
  • Ubuntu安装不同版本的opencv,并任意切换使用
  • 突破内存限制:Mac Mini M2 服务器化实践指南
  • 【排版教程】Word、WPS 分节符(奇数页等) 自动变成 分节符(下一页) 解决办法
  • 【在Linux世界中追寻伟大的One Piece】多线程(二)
  • flink学习(8)——窗口函数
  • 「实战应用」如何用图表控件LightningChart .NET实现散点图?(一)
  • 鸿蒙Native使用Demo
  • 29.UE5蓝图的网络通讯,多人自定义事件,变量同步
  • Scala—列表(可变ListBuffer、不可变List)用法详解
  • 【论文复现】偏标记学习+图像分类
  • C嘎嘎探索篇:栈与队列的交响:C++中的结构艺术