当前位置: 首页 > news >正文

图论最短路(floyed+ford)

Floyd 算法简介

Floyd 算法(也称为 Floyd-Warshall 算法)是一种动态规划算法,用于解决所有节点对之间的最短路径问题。它可以同时处理加权有向图和无向图,包括存在负权边的情况(只要没有负权环)。

核心思想

Floyd 算法的基本思想是利用动态规划,通过逐步引入中间节点优化路径,最终得到每对节点之间的最短路径。

假设图的节点编号为 1,2,…,n,dist[i][j] 表示节点 i 到节点 j 的当前最短路径长度,算法通过以下递推公式更新 dist[i][j]

dist[i][j]=min(dist[i][j],dist[i][k]+dist[k][j])

其中:

  • i:起点
  • j:终点
  • k:中间节点

含义:判断是否通过节点 k 可以使 i 到 j 的路径更短,如果更短,则更新。

算法流程

  1. 初始化距离矩阵 dist

    • 如果 i=j,dist[i][j] = 0(自身到自身的距离为 0)。
    • 如果 i≠j 且存在边 (i,j),dist[i][j] = data(边的权值)
    • 如果 i≠j 且不存在边 (i,j),dist[i][j] = INT_MAX(表示无穷大,路径不存在)。
  2. 动态规划

    • 依次引入节点 k(k=1,2,…,n)作为中间节点,更新所有节点对之间的最短路径。
    • 按公式更新 dist[i][j]。
  3. 检查结果

    • 遍历 dist 矩阵,获得任意两点之间的最短路径。
    • 如果对角线上的 dist[i][i] < 0,说明存在负权环。

代码

#include <bits/stdc++.h>
using namespace std;
int dis[110][110],n,m,a,b,want1,want2;
int main()
{cout<<"请输入点数,边数"<<endl;cin>>n>>m;cout<<"输入a点到b点的距离"<<endl;for(int i=1;i<=n;i++){for(int j=1;j<=n;j++){dis[i][j]=100000;}}for(int i=1;i<=m;i++){cin>>a>>b;cin>>dis[a][b];dis[b][a]=dis[a][b];}cout<<"输入想查找的两个点的编号"<<endl; cin>>want1>>want2;for(int k=1;k<=n;++k){for(int i=1;i<=n;++i){for(int j=1;j<=n;++j){if(dis[i][j]>dis[i][k]+dis[k][j]){dis[i][j]=dis[i][k]+dis[k][j];  }}}}cout<<want1<<"->"<<want2<<"最短的距离为"<<dis[want1][want2];return 0;
}

Ford 算法简介

Ford 算法(通常指 Bellman-Ford 算法)是一种用于计算单源最短路径的经典算法。它可以在加权有向图中找到从一个源点到所有其他节点的最短路径,支持负权边,并且能够检测负权环


算法思想

Bellman-Ford 算法的核心思想是通过松弛操作(Relaxation),逐步更新最短路径估计值。它基于以下性质:

  • 如果存在从节点 u 到节点 v 的边 (u,v,w),并且通过这条边可以缩短路径,那么更新路径长度:
    dist[v]=min(dist[v],dist[u]+w)

算法执行 n−1 次松弛操作(n 为节点数),确保找到从源点到所有节点的最短路径(若无负权环)。


算法流程

  1. 初始化

    • 将源点的距离设为 0(dist[src] = 0)。
    • 其他节点的初始距离设为无穷大(dist[i] = \infty)。
  2. 松弛所有边

    • 重复 n−1 次(最多需要 n−1 次遍历,因为最短路径最多包含 n−1 条边)。
    • 对图中每条边 (u,v,w),尝试更新节点 vvv 的距离。
  3. 检查负权环

    • 再次遍历所有边。如果发现还能继续松弛,说明存在负权环。

代码

#include <bits/stdc++.h>
using namespace std;
int d[110],n,m,s=1,k;
struct Theedge
{int start,end,data;
}edge[110];
int main()
{cin>>n>>m>>s>>k;for(int i=1;i<=m;i++){cin>>edge[i].start>>edge[i].end>>edge[i].data;}for(int i=1;i<=n;i++){d[i]=100000;}d[s]=0;for(int i=1;i<=n-1;i++){for(int j=1;j<=m;j++){int x=edge[j].start;int y=edge[j].end;int z=edge[j].data;d[y]=min(d[y],d[x]+z);d[x]=min(d[x],d[y]+z);}}cout<<d[k];return 0;
}

 

http://www.lryc.cn/news/490511.html

相关文章:

  • BERT的中文问答系统39
  • 从 Mac 远程控制 Windows:一站式配置与实践指南20241123
  • 【Linux学习】【Ubuntu入门】1-5 ubuntu软件安装
  • 如何自动下载和更新冰狐智能辅助?
  • 动态渲染页面爬取
  • C++适配器模式之可插入适配器的实现模式和方法
  • 每日一练:【动态规划算法】斐波那契数列模型之第 N 个泰波那契数(easy)
  • Hash table类算法【leetcode】
  • windows实现VNC连接ubuntu22.04服务器
  • 中国电信星辰大模型:软件工厂与文生视频技术的深度解析
  • 项目实战:基于Vue3实现一个小相册
  • macOS安装nvm node
  • 解决整合Django与Jinja2兼容性的问题
  • Elasticsearch面试内容整理-高级特性
  • linux通过手工删除文件卸载oracle 11g rac的具体步骤
  • 【ArcGISPro】根据yaml构建原始Pro的conda环境
  • 刷题笔记15
  • 【LeetCode热题100】队列+宽搜
  • 【阵列信号处理】相干信号和非相干信号生成
  • React 组件生命周期
  • Kylin Server V10 下基于Sentinel(哨兵)实现Redis高可用集群
  • 07-Making a Bar Chart with D3.js and SVG
  • 硅谷甄选前端项目环境配置笔记
  • 6.7机器学习期末复习题
  • 1123--日期类
  • YOLOV5 /onnx模型转换成rknn
  • Echarts+VUE饼图的使用(基础使用、多个饼图功能、单组饼图对应颜色使用)
  • 刘铁猛C#入门 026 重写与多态
  • 《筑牢安全防线:培养 C++安全编程思维习惯之道》
  • 《TCP/IP网络编程》学习笔记 | Chapter 16:关于 I/O 流分离的其他内容