当前位置: 首页 > news >正文

python的 pandas.Dataframe 和 pandas.Series基础内容

目录

0 有一个比较麻烦琐碎的地方

1 python  pandas.Dataframe

2 pd.concat() 可以合并 pd.Dataframe

2.1 pd.concat() 合并规则

3  pd.Dataframe.drop() 删除行列的操作

4 pd.Dataframe 列操作

5 pd.Dataframe 行操作

5.1 sample_dataframe2.head(n=2) 取前面的n行,不能任意

5.2 sample_dataframe2.query("查询条件")取前面的n行,不能任意

6 可以用pd.Dataframe().query() 方法 同时进行行和列筛选!

7  序列 pandas.Series()

7.1 什么是序列

7.2 将pd.Dataframe取出1列会变成pd.Series

7.3 序列 pd.series 和数组array() 的转化


0 有一个比较麻烦琐碎的地方

  • 所有的方法里,下面方法的参数,基本都是加一个""括起来基本就够了
  • 有些地方需要多层的中括号,[] , 比如 [ [ ] ]

1 python  pandas.Dataframe

  • 本质是一个二维表
  • 特殊点,在于多了一个默认的序号列
  • 语法
  • pd.Dataframe({key1:value1,key2:value2})

2 pd.concat() 可以合并 pd.Dataframe

2.1 pd.concat() 合并规则

  • pd.concat() 语法
  • pd.concat([pd.Dataframe1,pd.Dataframe1],axis=0/1) 
  • pd.concat() 可以指定合并的方向,默认是axis=0,也就是按行的方向合并
  • pd.concat() 可以指定合并的方向,如果是axis=1,就是按列的方向进行合并
import numpy as np
import pandas as pd
import scipy as sp# 可以用list 生成np.array()
sample_array1=np.array([1,2,3])
sample_array2=np.array([10,20,30])
sample_array3=np.array([100,200,300])# 进一步,可以用np.array()生成pd.Series
# 注意pd.Series 首字母一定大写
sample_series1=pd.Series(sample_array1)
print(sample_series1)
print()# 进一步,也可以用np.array()生成pd.DataFrame
# 注意pd.DataFrame 首字母一定大写
sample_dataframe1=pd.DataFrame({"col1":sample_array1,"col2":sample_array2,"col3":sample_array3,})
print(sample_dataframe1)
print()sample_dataframe2=pd.DataFrame({"col1":sample_array1,"col2":sample_array2+1,"col3":sample_array3+1,})
print(sample_dataframe2)
print()print(pd.concat([sample_dataframe1,sample_dataframe2]))  # pd.concat()默认合并是axis=0, 按行合并
print()print(pd.concat([sample_dataframe1,sample_dataframe2],axis=1))
print()

3  pd.Dataframe.drop() 删除行列的操作

  • pd.Dataframe.drop()
  • pd.Dataframe.drop("行名/列名",axis=0/1)
  • axis=0 是行
  • 注意:列名一般是字符串,如 "col1"
  • 注意:行名一般是数字,如 1

4 pd.Dataframe 列操作

  • pd.Dataframe 数据帧
  • 操作列的办法有两种
  1. 直接引用 pd.Dataframe 对象的属性,pd.Dataframe.列名(不加字符串引号)
  2. 类切片的列操作方法
  3. pd.Dataframe["列名1"]
  4. pd.Dataframe[["列名1","列名2","列名3"]]  #注意是双层中括号

5 pd.Dataframe 行操作

  • 行操作有两种方法
  • sample_dataframe2.head() 方法
  • sample_dataframe2.query()方法

5.1 sample_dataframe2.head(n=2) 取前面的n行,不能任意

  • n 只能是前面的连续列
print(sample_dataframe2)
print()
print(sample_dataframe2.head(n=2))

5.2 sample_dataframe2.query("查询条件")取前面的n行,不能任意

  • sample_dataframe2.query("查询条件")
  • sample_dataframe2.query("可以是任意的一个行条件,不要求非是index的值!")
  • sample_dataframe2.query("条件1 | 条件2")      # or  关系
  • sample_dataframe2.query("条件1& 条件2")      # and关系

6 可以用pd.Dataframe().query() 方法 同时进行行和列筛选!

print(sample_dataframe2.query("col3==301")[["col2","col3"]])

7  序列 pandas.Series()

7.1 什么是序列

  • 特殊之处:默认带一个序号列
  • 可以认为是带 序号的 数组/列表
  • pandas.Series( data, index, dtype, copy)

data:输入的数据,可以是列表、常量、ndarray 数组等。
index:索引值必须是唯一的,与data的长度相同,默认为np.arange(n)
dtype:数据类型
copy:是否复制数据,默认为false

7.2 将pd.Dataframe取出1列会变成pd.Series

  • 将pd.Dataframe取出1列会变成pd.Series
  • 也就是说 pd.Series 是  pd.Dataframe 的其中1列!
  • 注意方法不同有差别
  • 如果是单取出1列,生成pd.Series
  • 如果是单取出多列,生成的只是更小的pd.Dataframe,并不是pd.Series,很好理解,不要搞错。
print(sample_dataframe2)
print()
print(sample_dataframe2.col2)
print()
print(sample_dataframe2["col2"])
print()
print(sample_dataframe2[["col2"]])
print()print(type(sample_dataframe2))
print()
print(type(sample_dataframe2.col2))
print()
print(type(sample_dataframe2["col2"]))
print()
print(type(sample_dataframe2[["col2"]]))

7.3 序列 pd.series 和数组array() 的转化

  • pd.series.values 即可以生成对应的 np.array() 数组!
print(sample_dataframe2)
print()
print(sample_dataframe2.col2)
print()
print(sample_dataframe2.col2.values)
print()print(type(sample_dataframe2))
print()
print(type(sample_dataframe2.col2))
print()
print(type(sample_dataframe2.col2.values))
print()

http://www.lryc.cn/news/489816.html

相关文章:

  • golang学习5
  • 【C语言】11月第二次测试 ing
  • 行列式的理解与计算:线性代数中的核心概念
  • 按出生日期排序(结构体专题)
  • 【C++】拆分详解 - 多态
  • Python世界:力扣题解875,珂珂爱吃香蕉,中等
  • Java设计模式 —— Java七大设计原则详解
  • SpringBoot学习记录(六)配置文件参数化
  • android 使用MediaPlayer实现音乐播放--获取音乐数据
  • .net 8使用hangfire实现库存同步任务
  • 第 22 章 - Go语言 测试与基准测试
  • VB.Net笔记-更新ing
  • centos 服务器 docker 使用代理
  • python语言基础
  • Python中的Apriori库详解
  • MongoDB比较查询操作符中英对照表及实例详解
  • 掌上单片机实验室 – RT-Thread + ROS2 初探(25)
  • ‌Kotlin中的?.和!!主要区别
  • iframe嵌入踩坑记录
  • 面试小札:Java的类加载过程和类加载机制。
  • Spring 上下文对象
  • Wireshark抓取HTTPS流量技巧
  • 测试人员--如何区分前端BUG和后端BUG
  • 【Vue】指令扩充(指令修饰符、样式绑定)
  • Ubuntu20.04 Rk3588 交叉编译ffmpeg7.0
  • HTML常用表格与标签
  • 网络安全与加密
  • MySQL数据库-索引的介绍和使用
  • 【图像去噪】论文精读:Pre-Trained Image Processing Transformer(IPT)
  • Java SE 与 Java EE:基础与进阶的探索之旅