当前位置: 首页 > news >正文

【机器学习】- L1L2 正则化操作

目录

0.引言

在机器学习中,正则化是一种通过约束模型参数控制模型复杂度的技术。它可以有效减少过拟合,提高模型的泛化能力。常见的正则化方法包括 L1 正则化L2 正则化


1.正则化的基本思想

在训练模型时,我们的目标是最小化损失函数。正则化通过在损失函数中加入一个正则化项,对模型参数施加约束,从而避免过于复杂的模型。

带有正则化的损失函数一般形式为:

损失函数 = 数据误差 + λ ⋅ 正则化项 \text{损失函数} = \text{数据误差} + \lambda \cdot \text{正则化项} 损失函数=数据误差+λ正则化项

其中:

  • 数据误差:如均方误差 (MSE) 或交叉熵损失。
  • 正则化项:对模型参数的约束,如 L 1 L1 L1 L 2 L2 L2
  • λ \lambda λ:正则化强度(超参数),控制正则化项的权重。

2.L1 正则化

  1. 定义
    L1 正则化的正则化项是模型参数的绝对值之和:

    R ( w ) = ∥ w ∥ 1 = ∑ i = 1 n ∣ w i ∣ R(\boldsymbol{w}) = \|\boldsymbol{w}\|_1 = \sum_{i=1}^n |w_i| R(w)=w1=i=1nwi

    L1 正则化后的损失函数为:

    L = 数据误差 + λ ∑ i = 1 n ∣ w i ∣ L = \text{数据误差} + \lambda \sum_{i=1}^n |w_i| L=数据误差+λi=1nwi

  2. 特性

    • 通过惩罚参数的绝对值,鼓励某些参数变为零
    • 适合特征选择,因为它会自动剔除不重要的特征(参数为零)。
  3. 适用场景

    • 特征数量较多,且希望通过稀疏性来筛选重要特征(如高维数据)。

3.L2 正则化

  1. 定义
    L2 正则化的正则化项是模型参数的平方和:

    R ( w ) = ∥ w ∥ 2 2 = ∑ i = 1 n w i 2 R(\boldsymbol{w}) = \|\boldsymbol{w}\|_2^2 = \sum_{i=1}^n w_i^2 R(w)=w22=i=1nwi2

    L2 正则化后的损失函数为:

    L = 数据误差 + λ ∑ i = 1 n w i 2 L = \text{数据误差} + \lambda \sum_{i=1}^n w_i^2 L=数据误差+λi=1nwi2

  2. 特性

    • 通过惩罚参数的平方值,鼓励模型参数较小但不为零。
    • 与 L1 不同,它不会让参数变为完全零,而是接近零。
  3. 适用场景

    • 当希望模型平滑,避免过度拟合时(如线性回归)。

4.L1 与 L2 正则化的比较

特性L1 正则化L2 正则化
正则化项 ∣ w ∣ 1 = ∑ w i |\boldsymbol{w}|_1 = \sum w_i w1=wi ∣ w ∣ 2 2 = ∑ w i 2 |\boldsymbol{w}|_2^2 = \sum w_i^2 w22=wi2
参数特性产生稀疏解(参数可能为零)参数更平滑(接近零但不为零)
特征选择可以选择特征不适用于特征选择
计算效率非凸优化,计算复杂凸优化,计算简单
适用场景高维稀疏数据常规数据,避免过拟合

5.应用:控制模型复杂度

  1. 减少过拟合

    • 正则化通过限制参数的幅度,避免模型过度拟合训练数据中的噪声。
  2. 提高泛化能力

    • 限制模型复杂度,使其在新数据上表现更稳定。
  3. 特征选择

    • L1 正则化的稀疏性帮助自动选择重要特征。

6.超参数 λ \lambda λ 的选择

正则化强度 λ \lambda λ 是一个超参数,其值需要通过交叉验证或网格搜索来选择。

  • λ \lambda λ 较小
    • 正则化效果弱,模型复杂度高,容易过拟合。
  • λ \lambda λ 较大
    • 正则化效果强,模型复杂度低,可能导致欠拟合。

7.总结

正则化是控制模型复杂度的重要方法,通过引入 L1 或 L2 正则化项,既可以提高模型的泛化能力,又可以在某些场景下实现特征选择。合理设置正则化强度 λ \lambda λ,能够帮助模型在偏差与方差之间取得良好的平衡。

http://www.lryc.cn/news/488736.html

相关文章:

  • Logback实战指南:基础知识、实战应用及最佳实践全攻略
  • 基于python的机器学习(三)—— 关联规则与推荐算法
  • 【大模型】LLaMA: Open and Efficient Foundation Language Models
  • 模拟器多开限制ip,如何设置单窗口单ip,每个窗口ip不同
  • hive的存储格式
  • 鸿蒙学习高效开发与测试-应用程序框架(3)
  • 什么命令可以查看数据库中表的结构
  • django基于python 语言的酒店推荐系统
  • 【深度学习|onnx】往onnx中写入训练的超参或者类别等信息,并在推理时读取
  • WebSocket详解、WebSocket入门案例
  • 05_Spring JdbcTemplate
  • Bug:引入Feign后触发了2次、4次ContextRefreshedEvent
  • 最新‌VSCode保姆级安装教程(附安装包)
  • layui 表格点击编辑感觉很好用,实现方法如下
  • 三十一、构建完善微服务——API 网关
  • 非对称之美(贪心)
  • 详细教程-Linux上安装单机版的Hadoop
  • C#桌面应用制作计算器进阶版01
  • [开源] 告别黑苹果!用docker安装MacOS体验苹果系统
  • 多模态大模型(4)--InstructBLIP
  • 【Linux】基于 Busybox 构建嵌入式 Linux(未完成)
  • Unet++改进38:添加GLSA(2024最新改进方法)具有聚合和表示全局和局部空间特征的能力,这有利于分别定位大目标和小目标
  • c++中mystring运算符重载
  • 图像处理 - 色彩空间转换
  • MariaDB面试题及参考答案
  • PostgreSQL常用字符串函数与示例说明
  • 力扣第58题:最后一个单词的长度
  • 【Maven】Nexus几个仓库的介绍
  • SSH免密登陆
  • 【Linux】Namespace