当前位置: 首页 > news >正文

基于 RBF 神经网络辨识的单神经元 PID 模型参考自适应控制

这是一个基于 RBF 神经网络辨识单神经元 PID 模型参考自适应控制 的系统框图,包含以下主要部分:

  1. RBF 神经网络模块:用于对系统进行辨识,输入误差 e(t)e(t)e(t) 和误差变化量 Δe(t)\Delta e(t)Δe(t),输出与系统特性相关的辨识结果,为控制器参数调整提供依据。
  2. 单神经元 PID 控制器:根据 RBF 神经网络的输出,自适应调整 PID 控制器的比例增益 KpK_pKp​、积分增益 KiK_iKi​、微分增益 KdK_dKd​。
  3. 参考模型:定义期望的系统响应行为,用于生成理想输出,作为实际输出的比较基准。
  4. 被控对象:受控的目标系统,接收控制信号后产生实际输出。
  5. 反馈回路:通过测量系统实际输出,与参考模型输出进行比较,计算误差 e(t)e(t)e(t) 和误差变化量 Δe(t)\Delta e(t)Δe(t),输入到神经网络和控制器中。

信号流动通过箭头清晰标识,框图清晰呈现了各模块间的关系以及信号处理过程,反映了系统的自适应调整机制和控制策略。

基于 RBF 神经网络辨识的单神经元 PID 模型参考自适应控制 是一种结合了 RBF(径向基函数)神经网络和单神经元自适应 PID 控制的方法。该方法通过神经网络进行系统辨识,利用辨识到的模型来调整 PID 控制器的参数。具体来说,RBF 神经网络根据误差和误差变化量的输入,学习并适应系统的动态特性,从而为 PID 控制器提供更准确的参数调整。

基本原理

  1. 系统辨识:首先,RBF 神经网络通过输入的误差和误差变化量来识别系统的动态特性。神经网络学习如何将误差和误差变化量映射到 PID 参数(比例增益 KpK_pKp​、积分增益 KiK_iKi​、微分增益 KdK_dKd​)上。

  2. PID 控制:基于 RBF 神经网络的辨识结果,PID 控制器动态调整增益 KpK_pKp​、KiK_iKi​、KdK_dKd​,使得系统能够快速、准确地响应目标。

  3. 参考自适应控制:该方法结合了参考模型来设计控制策略。通过引入参考模型,控制系统的目标是使实际系统的输出尽量接近参考模型的输出,从而达到期望的控制效果。

算法流程

  1. 误差计算:在每个控制周期,计算当前的误差 e(t)e(t)e(t) 和误差变化量 Δe(t)\Delta e(t)Δe(t)。

  2. RBF 神经网络训练:利用误差和误差变化量作为输入,RBF 神经网络通过训练优化权重,从而为 PID 控制器提供增益的调整值。

  3. PID 控制:根据神经网络计算出的 PID 增益调整量,更新 PID 控制器的增益。

  4. 控制信号计算:使用更新后的 PID 增益计算控制信号。

  5. 参考模型调整:通过与参考模型输出的对比,进行反馈调整,进一步优化 PID 参数,使实际输出更接近参考模型的期望输出。

C++ 实现(简化版)

#include <iostream>
#include <vector>
#include <cmath>class RBFNeuralNetwork {
private:int input_size, hidden_size, output_size;double learning_rate;std::vector<std::vector<double>> centers;   // RBF中心std::vector<double> sigma;                  // RBF的宽度std::vector<std::vector<double>> weights;   // 隐藏层到输出层的权重std::vector<double> output;                 // 神经网络输出public:RBFNeuralNetwork(int input_size, int hidden_size, int output_size, double learning_rate = 0.01): input_size(input_size), hidden_size(hidden_size), output_size(output_size), learning_rate(learning_rate) {centers.resize(hidden_size, std::vector<double>(input_size));sigma.resize(hidden_size);weights.resize(hidden_size, std::vector<double>(output_size));output.resize(output_size);// 随机初始化RBF中心和宽度for (int i = 0; i < hidden_size; ++i) {for (int j = 0; j < input_size; ++j) {centers[i][j] = (rand() % 1000) / 1000.0;  // 随机初始化中心}sigma[i] = (rand() % 1000) / 1000.0 + 0.5;  // 随机初始化宽度}// 随机初始化权重for (int i = 0; i < hidden_size; ++i)for (int j = 0; j < output_size; ++j)weights[i][j] = (rand() % 1000) / 1000.0;}// 计算高斯基函数double gaussian_function(const std::vector<double>& x, const std::vector<double>& center, double sigma) {double sum = 0.0;for (int i = 0; i < x.size(); ++i)sum += pow(x[i] - center[i], 2);return exp(-sum / (2 * pow(sigma, 2)));}// 前向传播std::vector<double> forward(const std::vector<double>& input) {std::vector<double> hidden_output(hidden_size);// 计算每个隐含层神经元的输出for (int i = 0; i < hidden_size; ++i) {hidden_output[i] = gaussian_function(input, centers[i], sigma[i]);}// 计算输出层for (int i = 0; i < output_size; ++i) {output[i] = 0.0;for (int j = 0; j < hidden_size; ++j) {output[i] += hidden_output[j] * weights[j][i];}}return output;}// 反向传播void backward(const std::vector<double>& input, const std::vector<double>& target) {// 计算输出误差std::vector<double> output_error(output_size);for (int i = 0; i < output_size; ++i) {output_error[i] = target[i] - output[i];}// 更新权重for (int i = 0; i < output_size; ++i) {for (int j = 0; j < hidden_size; ++j) {weights[j][i] += learning_rate * output_error[i] * output[j];}}}
};class RBFNeuralNetworkPIDController {
private:double Kp, Ki, Kd;RBFNeuralNetwork rbf_network;public:RBFNeuralNetworkPIDController(double Kp_init, double Ki_init, double Kd_init): Kp(Kp_init), Ki(Ki_init), Kd(Kd_init), rbf_network(2, 5, 3) {}  // 输入:误差和误差变化,输出:Kp, Ki, Kd增益double compute(double setpoint, double actual) {double error = setpoint - actual;static double prev_error = 0;double delta_error = error - prev_error;prev_error = error;// 神经网络的输入为误差和误差变化量std::vector<double> input = { error, delta_error };std::vector<double> output = rbf_network.forward(input);// 使用神经网络输出调整PID增益Kp += output[0];Ki += output[1];Kd += output[2];// 计算控制信号double control_signal = Kp * error + Ki * error + Kd * delta_error;return control_signal;}
};int main() {RBFNeuralNetworkPIDController pid_controller(1.0, 0.1, 0.01);double setpoint = 10.0;double actual = 0.0;// 引入参考模型(假设理想模型的目标输出是 10.0)double reference_output = setpoint;for (int step = 0; step < 50; ++step) {double control_signal = pid_controller.compute(setpoint, actual);actual += control_signal * 0.1;  // 假设控制信号对系统的影响std::cout << "Step: " << step << ", Control Signal: " << control_signal << ", Actual Output: " << actual << ", Reference Output: " << reference_output << std::endl;}return 0;
}

代码解释

  • RBFNeuralNetwork 类:这个类实现了一个简单的 RBF 神经网络。网络的输入是误差和误差变化量,输出是 PID 参数增益的调整量。网络使用高斯函数作为径向基函数进行计算。

  • RBFNeuralNetworkPIDController 类:该类将 RBF 神经网络用于 PID 控制器的增益调整。通过计算误差和误差变化量,它动态调整 PID 参数,并使用这些参数来计算控制信号。

  • 参考模型:在 main 函数中,假设目标输出(参考模型)为 10.0。每次控制周期,实际输出会根据 PID 控制计算调整,控制信号通过神经网络动态调整 PID 参数。

总结

基于 RBF 神经网络辨识的单神经元 PID 模型参考自适应控制结合了 RBF 神经网络的学习能力和 PID 控制的精确性。神经网络通过系统的输入(误差和误差变化量)进行自适应地调整 PID 增益,从而提高系统的响应性和稳定性。这种方法在面对非线性系统或复杂系统时,能够有效优化控制器性能。

http://www.lryc.cn/news/488653.html

相关文章:

  • 2024年 Web3开发学习路线全指南
  • Ubuntu22.04LTS 部署前后端分离项目
  • 「Mac玩转仓颉内测版23」基础篇3 - 深入理解整数类型
  • 渗透测试导学
  • Django实现智能问答助手-基础配置
  • 亚马逊商品详情API接口解析,Json数据示例返回
  • git根据远程分支创建本地新分支
  • Android U 多任务启动分屏——SystemUI流程(更新中)
  • 使用SaaS化的Aurora应用快速搭建私人ChatGPT助手
  • .NET 9与C# 13革新:新数据类型与语法糖深度解析
  • 2.fs文件系统模块
  • Ubuntu24.04LTS设置root用户可远程登录
  • ROS2指令总结(跟随古月居教程学习)
  • IPTV智慧云桌面,后台服务器搭建笔记
  • 徒手从零搭建一套ELK日志平台
  • udp_socket
  • 肝了半年,我整理出了这篇云计算学习路线(新手必备,从入门到精通)
  • 【Golang】手搓DES加密
  • YouQu使用手册【元素定位】
  • Spark RDD sortBy算子什么情况会触发shuffle
  • 机器视觉相机重要名词
  • Django:从入门到精通
  • android viewpager2 嵌套 recyclerview 手势冲突
  • 依赖管理(go mod)
  • Apple Vision Pro开发001-开发配置
  • android 动画原理分析
  • Elasticsearch 6.8 分析器
  • 实验室资源调度系统:基于Spring Boot的创新
  • 实验三:构建园区网(静态路由)
  • 3. SQL优化