当前位置: 首页 > news >正文

【ESP32】ESP-IDF开发 | 低功耗管理+RTC唤醒和按键唤醒例程

1. 简介

        ESP32支持5种低功耗模式,低功耗管理单元包括调压器、功耗控制器、电源开关单元、电源域隔离单元 (Isolation Cell) 等部分。

1.1 RTC单元

        RTC单元是ESP32低功耗管理的核心,可用于管理低功耗模式的进入和退出,控制时钟源、PLL、电源开关和隔离单元以产生电源门控、时钟门控和复位信号。

        RTC单元主要包含以下几个模块:

  1. RTC主状态机:记录电源状态;
  2. 数字和模拟电源控制器:可用于为RTC的数字模块和模拟模块生成电源门控/时钟门控信号;
  3. 睡眠和唤醒控制器:可处理低功耗模式的进入和退出;
  4. 计时器:包括RTC主计时器、ULP协处理器计时器和触摸计时器;
  5. 低功耗处理器和传感器控制器:ULP协处理器、触摸控制器、SAR ADC控制器等;
  6. 保留内存:RTC慢速内存,绝大部分用作保留内存或存储ULP协处理器的指令和数据内存;RTC快速内存,绝大部分用作保留内存;
  7. 保留寄存器:该寄存器永远开启,可用于数据存储;
  8. RTC IO管脚:18 个“always-on”管脚,通常作为唤醒源。

1.2 低功耗时钟

        在低功耗模式下,ESP32的40 MHz晶振和PLL通常将断电以降低功耗,转而使用低功耗时钟维持工作。

        RTC模块可以使用5个低功耗时钟源:

  1. 外部低速晶振时钟XTL32K_CLK(32.768 kHz);
  2. 外部高速晶振时钟XTAL_DIV_CLK(2 MHz ~ 40 MHz);
  3. 内部RC振荡器RC_SLOW_CLK(频率可调,通常为150 kHz);
  4. 内部8MHz振荡器RC_FAST_CLK;
  5. 内部31.25 kHz时钟RC_FAST_DIV_CLK(来自内部8MHz振荡器,256分频)。

        以上的时钟源在RTC内部会区分成慢速时钟和快速时钟,每个RTC内部模块所使用的时钟类型是不同的;像RTC定时器、RTC主状态机和电源管理模块使用的是慢速时钟,ULP协处理器、传感器控制器、RTC内存和RTC寄存器使用的是快速时钟。

         对于数字内核(无线模块)则可以使用上面的4种时钟源。

1.3 低功耗模式

1. Active模式

  • CPU的工作时钟为XTAL_DIV_N(40 MHz/26 MHz)或PLL(80 MHz/160 MHz/240 MHz);
  • 芯片可以接收、发射或监听信号。

2. Modem-sleep模式

  • CPU可以工作,时钟可以配置;
  • Wi-Fi/蓝牙基带受时钟门限控制或关闭,射频模块关闭;
  • PLL 为 80 MHz 时,电流消耗:≈ 30 mA;
  • XTAL 为 2 MHz 时,电流消耗:≈ 3 mA;
  • 即刻唤醒;

3. Light-sleep模式

  • 内部 8 MHz 振荡器、40 MHz 高速晶振、PLL 及射频模块均禁用;
  • 数字内核时钟受门限限制,CPU暂停工作;
  • ULP 协处理器和触摸控制器可以周期性触发,对传感器进行监测;
  • 电流消耗:≈ 800 µA;
  • 唤醒延迟:< 1 ms;

4. Deep-sleep模式

  • 内部 8 MHz 振荡器、40 MHz 高速晶振、PLL 及射频模块均禁用;
  • 数字内核断电,CPU内容丢失;
  • RTC 内核的供电电压降至 0.7V;
  • 8 x 32 位数据保存在通用保留寄存器中;
  • RTC 内存和快速 RTC 内存可以保持;
  • 电流消耗:≈ 6.5 µA;
  • 唤醒延迟:< 1 ms。

5. 休眠模式

  • 内部 8 MHz 振荡器、40 MHz 高速晶振、PLL 及射频模块均禁用;
  • 数字内核断电,CPU 内容丢失;
  • RTC 外设域断电;
  • RTC 内核的供电电压降至 0.7V;
  • 8 x 32 位数据保存在通用保留寄存器中;
  • RTC 内存和快速 RTC 内存断电;
  • 电流消耗:≈ 4.5 µA;
  • 唤醒源:仅支持 RTC 计时器;
  • 唤醒延迟:< 1 ms。

1.4 唤醒源

唤醒源Light-sleepDeep-sleep休眠
EXT0YYN
EXT1YYY
GPIOYYN
RTC定时器YYY
SDIOYNN
WiFiYNN
UART0YNN
UART1YNN
TOUCHYYN
ULP协处理器YYN
蓝牙YNN

2. 例程

2.1 RTC定时器唤醒

        这个例程中配置RTC定时器,使处理器在进入深度睡眠后5秒自动唤醒。

#include "freertos/FreeRTOS.h"
#include "freertos/queue.h"
#include "esp_log.h"
#include "esp_sleep.h"#include <string.h>#define TAG "app"int app_main()
{while (1) {ESP_ERROR_CHECK(esp_sleep_enable_timer_wakeup(5 * 1000000));ESP_LOGI(TAG, "Enter deep sleep");esp_deep_sleep_start();ESP_LOGI(TAG, "Exit deep sleep");}
}

        idf对低功耗的封装是比较完善的,仅需两个函数就可以完成。

        esp_sleep_enable_timer_wakeup配置定时器唤醒的时间,单位为微秒。

默认情况下,RTC定时器的时钟源选择的是RC_SLOW_CLK,即内部150kHz振荡器,因为该时钟源的功耗是最小的。如果需要更改时钟源,需要修改CONFIG_RTC_CLK_SRC编译选项

        esp_deep_sleep_start使处理器进入深度睡眠模式;当然也可以调用esp_light_sleep_start进入浅睡眠模式。

         下面就是程序的系统打印log。需要注意的是,因为深度睡眠下CPU会断电,内部寄存器的内容丢失,所以唤醒后程序是从头开始执行的

2.2 按键唤醒

        这个例程中配置处理器进入深度睡眠,使用GPIO按键唤醒。

 

#include "freertos/FreeRTOS.h"
#include "freertos/queue.h"
#include "esp_log.h"
#include "esp_sleep.h"
#include "driver/rtc_io.h"#include <string.h>#define TAG "app"int app_main()
{esp_sleep_wakeup_cause_t cause = esp_sleep_get_wakeup_cause();if (cause == ESP_SLEEP_WAKEUP_EXT0) {ESP_LOGI(TAG, "Wake up by EXT0");}while (1) {ESP_ERROR_CHECK(esp_sleep_enable_ext0_wakeup(0, 0));ESP_ERROR_CHECK(rtc_gpio_pullup_en(0));  // 内部上拉ESP_ERROR_CHECK(rtc_gpio_pulldown_dis(0));ESP_LOGI(TAG, "Enter deep sleep");esp_deep_sleep_start();}
}

        如果要在深度睡眠模式下使用GPIO唤醒,必须使用RTC GPIO,ESP32中只有部分GPIO可以复用为该功能。

         我使用的是IO0作为唤醒脚。esp_sleep_enable_ext0_wakeup函数传入唤醒IO号和唤醒电平;0就是低电平唤醒,1就是高电平唤醒。

        rtc_gpio_pullup/pulldown_dis/en函数配置GPIO的上下拉,我设置成上拉模式。这里要注意即使板子上的IO带了硬件上下拉,但是进入深度睡眠是会关闭VDD电源的,所以还是需要配置。

        同样使用esp_deep_sleep_start进入深度睡眠。

        下面就是按键唤醒后的系统log。

http://www.lryc.cn/news/482835.html

相关文章:

  • Windows 局域网IP扫描工具:IPScaner 轻量免安装
  • HTML的浮动与定位
  • 【网络安全 | 漏洞挖掘】我如何通过路径遍历实现账户接管
  • DB-GPT系列(四):DB-GPT六大基础应用场景part1
  • SpringCloud篇(服务拆分 / 远程调用 - 入门案例)
  • Rust 建造者模式
  • ANN DNN CNN SNN
  • go语言进阶之并发模式
  • Spring Cloud LoadBalancer:负载均衡的服务调用
  • 微信小程序之轮播图
  • 羲和数据集收集器1.3
  • UE--IOS打包失败 AutomationTool exiting with ExitCode=9 (9)
  • 第8章利用CSS制作导航菜单
  • UNIX网络编程-TCP套接字编程
  • 美团代付微信小程序 read.php 任意文件读取漏洞复现
  • centos7 node升级到node18
  • 使用Matlab建立随机森林
  • 【江苏-无锡】《无锡市市级政务信息化建设及运行维护项目支出预算标准(试行)》 -省市费用标准解读系列10
  • 2024-11-12 问AI: [AI面试题] 您将如何设计一个人工智能系统来预测电信公司的客户流失?
  • 【数字静态时序分析】复杂时钟树的时序约束SDC写法
  • springboot苍穹外卖实战:五、公共字段自动填充(aop切面实现)+新增菜品功能+oss
  • Go 语言中,golang结合 PostgreSQL 、MySQL驱动 开启数据库事务
  • Git核心概念
  • 网络安全技术在能源领域的应用
  • 这些场景不适合用Selenium自动化!看看你踩过哪些坑?
  • PHP反序列化靶场(php-SER-libs-main 第一部分)
  • 基于大数据爬虫+Python+SpringBoot+Hive的网络电视剧收视率分析与可视化平台系统(源码+论文+PPT+部署文档教程等)
  • DHCP与FTP
  • 云渲染与云电脑,应用场景与技术特点全对比
  • RockPI 4A单板Linux 4.4内核下的RK3399 GPIO功能解析