当前位置: 首页 > news >正文

Leidenアルゴリズムの詳細解説:Pythonによるネットワーク分割の実装

Leidenアルゴリズムの詳細解説:Pythonによるネットワーク分割の実装

    • 目次
    • 1. Leidenアルゴリズムの概要
    • 2. Python実装例
    • 3. グループ分けの結果分析
    • 4. なぜこのような分割になるのか
    • 5. Leidenアルゴリズムの仕組み
    • 6. 実践的な応用例
    • 7. 初心者へのアドバイス
    • 8. まとめ

目次

  • 1. Leidenアルゴリズムの概要
  • 2. Python実装例
  • 3. グループ分けの結果分析
  • 4. なぜこのような分割になるのか
  • 5. Leidenアルゴリズムの仕組み
  • 6. 実践的な応用例
  • 7. 初心者へのアドバイス
  • 8. まとめ

1. Leidenアルゴリズムの概要

Leidenアルゴリズムは、複雑なネットワーク内のコミュニティを検出するためのアルゴリズムです。例えば、大きなクラスの生徒たちを仲の良いグループに分けたい場合など、このアルゴリズムが役立ちます。

2. Python実装例

実際にPythonでコードを書いて、部活動のメンバーをグループ分けする例を見てみましょう。

import networkx as nx
from graspologic.partition import hierarchical_leiden# 部活メンバーの関係図を作成
G = nx.Graph()
members = ["田中", "佐藤", "鈴木", "高橋", "渡辺", "伊藤", "山本", "中村", "小林", "加藤", "吉田", "山田", "佐々木", "山口", "松本", "井上", "木村", "林", "斎藤", "清水"
]
G.add_nodes_from(members)# メンバー間の関係を追加
relationships = [("田中", "佐藤"), ("田中", "鈴木"), ("佐藤", "高橋"), ("鈴木", "渡辺"),("高橋", "伊藤"), ("渡辺", "山本"), ("伊藤", "中村"), ("山本", "小林"),("中村", "加藤"), ("小林", "田中"), ("加藤", "佐藤"), ("吉田", "山田"),("佐々木", "山口"), ("松本", "井上"), ("木村", "林"), ("斎藤", "清水"),("田中", "吉田"), ("佐藤", "佐々木"), ("鈴木", "松本"), ("高橋", "木村"),("渡辺", "斎藤"), ("伊藤", "山田"), ("山本", "山口"), ("中村", "井上"),("小林", "林"), ("加藤", "清水")
]
G.add_edges_from(relationships)# Leidenアルゴリズムでグループ分け
result = hierarchical_leiden(graph=G,max_cluster_size=5,  # 1グループ最大5人extra_forced_iterations=3  # より良い結果を得るため3回追加で試行
)# 完全な結果を表示
print("グループ分け結果(詳細):")
for cluster in result:print(cluster)# 最終的なグループ分けを整理して表示
final_groups = {}
for cluster in result:if cluster.is_final_cluster:if cluster.cluster not in final_groups:final_groups[cluster.cluster] = []final_groups[cluster.cluster].append(cluster.node)print("\n最終グループ分け:")
for group_num, members in final_groups.items():print(f"グループ{group_num + 1}{', '.join(members)}様")

3. グループ分けの結果分析

上記のコードを実行すると、以下のような結果が得られます:

最終グループ分け:
グループ1:田中, 佐藤, 鈴木, 高橋様
グループ2:渡辺, 伊藤, 山本, 中村様
グループ3:小林, 加藤, 吉田, 山田様
グループ4:佐々木, 山口様
グループ5:松本, 井上様
グループ6:木村, 林様
グループ7:斎藤, 清水様

4. なぜこのような分割になるのか

Leidenアルゴリズムは、ネットワーク全体の構造を考慮して分割を行います。例えば:

  1. 田中さん、佐藤さん、鈴木さん、高橋さんは同じグループになりましたが、これは彼らの間に直接的または間接的な繋がりが多いためです。
  2. 一見すると関係が深そうな人々(例:田中さんと小林さん)が別々のグループになることもありますが、これは全体的な関係性を見た結果、別々のグループにした方が各グループ内の結束が強くなるためです。
  3. 佐々木さんと山口さんのように2人だけのグループができるのは、彼らの関係が特に密接であるか、他のメンバーとの関係が比較的弱いためかもしれません。

5. Leidenアルゴリズムの仕組み

  1. 初期分割:まずネットワーク構造に基づいて、いくつかの大きなコミュニティに分割します。
  2. 最適化:各ノードを異なるコミュニティに移動させ、モジュラリティ(分割の質を測る指標)を向上させます。
  3. 細分化:必要に応じて大きなコミュニティをさらに小さなサブコミュニティに分割します。

6. 実践的な応用例

Leidenアルゴリズムは様々な分野で活用できます:

  1. SNS分析:趣味や興味が近いユーザーグループの発見
  2. 生物情報学:タンパク質相互作用ネットワークの分析
  3. 交通網最適化:効率的な路線計画の策定
  4. レコメンドシステム:より正確な商品推薦の実現

7. 初心者へのアドバイス

  1. パラメータの調整max_cluster_sizeextra_forced_iterationsを変更して、結果の違いを確認してみましょう。
  2. ネットワークの可視化:NetworkXのグラフ描画機能を使って、関係性を視覚的に理解しましょう。
  3. データセットの実験:様々な関係ネットワークを作成して、アルゴリズムの挙動を確認しましょう。
  4. ランダム性の理解:実行するたびに少し異なる結果が出ることがありますが、これは正常な挙動です。

8. まとめ

この例を通じて、Leidenアルゴリズムが複雑なネットワーク内の密接なグループをどのように見つけ出すかを学びました。アルゴリズムの内部は複雑ですが、Pythonを使えば簡単に実装できることが分かりました。

時には予想外の結果が出ることもありますが、これはネットワーク構造の複雑さとLeidenアルゴリズムの特徴を反映しています。

プログラミングとアルゴリズムの学習で最も大切なのは実践です。コードを修正したり、独自のネットワークを作成したりして、様々な実験を試みてください。皆様の学習が実り多きものとなりますように!

http://www.lryc.cn/news/482794.html

相关文章:

  • 安当ASP系统:适合中小企业的轻量级Radius认证服务器
  • Vue 组件间传值指南:Vue 组件通信的七种方法
  • 推荐一个超漂亮ui的网页应用设计
  • 有什么初学算法的书籍推荐?
  • 自动化工作流建设指南
  • [免费]SpringBoot+Vue3校园宿舍管理系统(优质版)【论文+源码+SQL脚本】
  • SNK施努卡 - 机器人测温取样系统
  • goframe开发一个企业网站 验证码17
  • 【JavaEE初阶 — 多线程】单例模式 & 指令重排序问题
  • MySQL电商多级分类表设计方案对比
  • 网络安全工程师需要知道哪些IPSec的基本原理?
  • leetcode 148. 排序链表 中等
  • 动态规划与贪心算法:核心区别与实例分析
  • .NET 公共语言运行时(Common Language Runtime,CLR)
  • SpringBoot使用TraceId日志链路追踪
  • YOLO11 旋转目标检测 | OBB定向检测 | ONNX模型推理 | 旋转NMS
  • PCL 点云拟合 拟合空间直线
  • 我的创作纪念日-20241112-感谢困难
  • 苍穹外卖05-Redis相关知识点
  • unity 玩家和炸弹切线计算方式
  • 【MySQL】MySQL中的函数之REGEXP_LIKE
  • 跟着尚硅谷学vue2—进阶版4.0—Vuex1.0
  • 深度学习服务器租赁AutoDL
  • excel常用技能
  • Mac电脑中隐藏文件(即以 . 开头的文件/文件夹)的显示和隐藏的两种方法
  • 【Linux】:进程信号(信号概念 信号处理 信号产生)
  • Flink运行时架构以及核心概念
  • 用 Python 从零开始创建神经网络(五):损失函数(Loss Functions)计算网络误差
  • [CKS] K8S RuntimeClass SetUp
  • 【Python爬虫实战】轻量级爬虫利器:DrissionPage之SessionPage与WebPage模块详解