当前位置: 首页 > news >正文

OpenCoder:首个完全开源的顶级代码大模型,训练秘籍全公开!| LLM×MapReduce,无需训练就超越GPT-4!

大模型领域的发展日新月异,每天都有许多有趣的论文值得深入品读。下面是本期觉得比较有意思的论文:

1、OpenCoder:首个完全开源的顶级代码大模型,训练秘籍全公开!``2、超长文本处理新突破!LLM×MapReduce,无需训练就超越GPT-4!

1、OpenCoder:首个完全开源的顶级代码大模型,训练秘籍全公开!

在当今AI时代,代码大模型正在改变着软件开发的范式。ChatGPT、Copilot等工具已经成为开发者的得力助手,但它们都像是一个神秘的"黑匣子"——你只能用,却不知其所以然。而现在,一个重磅炸弹被扔出:OpenCoder来了,它不仅性能达到顶级水平,更重要的是,它的"训练秘籍"被完全公开!

OpenCoder团队做了一件前所未有的事:他们不仅开源了模型权重和推理代码,还公开了完整的训练数据、数据处理流水线、实验结果和详细的训练方案。这就像是一位米其林大厨不光给你最终的美食,还把所有的食材清单和烹饪步骤都毫无保留地分享给你。

通过大量的实验,OpenCoder团队发现了打造顶级代码模型的关键秘诀:精心设计的数据清洗规则、代码相关文本的召回策略、以及在不同训练阶段使用高质量的合成数据。有趣的是,他们还发现仅仅依靠GitHub星标数来筛选训练数据反而会适得其反,因为这可能会降低数据的多样性。

更令人振奋的是,OpenCoder在多个基准测试中已经达到了与顶级专有模型相当的性能。这意味着,开源社区终于拥有了一个真正可以与商业巨头掰手腕的代码大模型,而且任何人都可以基于它的完整"训练秘籍"打造自己的模型。这无疑将极大推动代码智能领域的开放研究和创新发展。

论文标题:OpenCoder: The Open Cookbook for Top-Tier Code Large Language Models``论文链接:https://arxiv.org/abs/2411.04905

**2、超长文本处理新突破!**LLM×MapReduce,无需训练就超越GPT-4!

在大语言模型(LLM)的世界里,处理超长文本一直是个难题。虽然GPT-4已经能处理相当长的文本,但动辄需要昂贵的训练资源和海量的长文本数据。现在,一个令人振奋的解决方案横空出世!研究团队提出的LLM×MapReduce框架,不需要任何额外训练,就能让模型处理超长文本,而且效果还超越了现有的开源和商业模型。

这个方案的精妙之处在于它采用了"分而治之"的策略:把长文本切成小块让模型处理,然后再把结果巧妙地组合起来。听起来简单,但魔鬼藏在细节里。研究团队创新性地提出了"结构化信息协议"和"上下文置信度校准机制"来解决两大关键问题:跨片段的信息依赖和信息冲突。就像是在组装一幅巨大的拼图,不仅要确保每块拼图都放对位置,还要能识别出哪些才是最关键的线索。

实验结果令人惊叹:LLM×MapReduce不仅在性能上超越了同类方案,而且能够适用于多种不同的语言模型。更难能可贵的是,它不需要昂贵的训练成本,真正实现了"平民化"的超长文本处理方案。这无疑为AI在长文本处理领域开辟了一条全新的道路!

论文标题:LLM×MapReduce: Simplified Long-Sequence Processing using Large Language Models``论文链接:https://arxiv.org/abs/2410.09342

亲爱的读者,感谢您阅读到这里。正如我们探讨的语言模型一样,每个人都有自己的潜力和价值。认清自己,要么接受平凡,要么踏踏实实从 0 到 1 去积累资源。这世上从来没有简单的、一蹴而就的成功。无论是LLM的发展还是个人的成长,都需要持续不断的努力和积累。如果您也对科技、人工智能和个人发展感兴趣,欢迎关注我们的微信公众号"LLM帝国"。在这里,我们将为您揭示LLM世界的帝国格局,带来最前沿的技术洞察和行业趋势,助您在这个LLM驱动的时代中找准定位,开拓属于自己的疆土。让我们携手探索LLM的无限疆界,在这个充满机遇与挑战的帝国中,共同成长,共创辉煌!

在这里插入图片描述

如何学习AI大模型?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

在这里插入图片描述

👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

http://www.lryc.cn/news/481211.html

相关文章:

  • springboot静态资源映射不生效问题
  • 通过 SSH 隧道将本地端口转发到远程主机
  • 【北京迅为】itop-3588开发板摄像头使用手册Android12 双摄方案
  • 初见Linux:基础开发工具
  • 微服务架构面试内容整理-分布式配置管理-Nacos Config
  • React官网生成Recat项目的区别
  • 网络安全---安全见闻
  • 在 CSS 中,gap 是 布局容器(flex 或 grid)的属性。它用于设置容器内子元素之间的间距。
  • [zotero]Ubuntu搭建WebDAV网盘
  • 力扣17-电话号码的数字组合
  • 如何处理模型的过拟合和欠拟合问题
  • CSRF详解
  • C# winform 的数据采集,采集周期是间隔10ms、100ms等等,但始终都有1ms的误差,并不是精准的10ms,哪些原因呢
  • 【国内中间件厂商排名及四大中间件对比分析】
  • qt QLocale详解
  • Node.js简介以及安装部署 (基础介绍 一)
  • unity实习面
  • React Native WebView 进阶:实现带回调函数的通讯
  • 【设计模式】结构型模式(四):组合模式、享元模式
  • 分布式数据库中间件mycat
  • 放大电路中的反馈 > 负反馈 > 四种组态 > 虚断和虚短
  • STM32F405RGT6单片机原理图、PCB免费分享
  • 大语言模型鼻祖Transformer的模型架构和底层原理
  • GB/T 43206—2023信息安全技术信息系统密码应用测评要求(五)
  • 深度学习:BERT 详解
  • 智能的编织:C++中auto的编织艺术
  • 订单分库分表
  • 【温度表达转化】
  • 封装一个web Worker 处理方法实现多线程
  • unity3d————屏幕坐标,GUI坐标,世界坐标的基础注意点