当前位置: 首页 > news >正文

丹摩征文活动|Faster-Rcnn-训练与测试详细教程

本文

  • 丹摩智算平台官方网站的介绍
  • Faster-Rcnn-训练与测试
    • 提前准备
    • 进行Faster-rcnn 的环境配置
    • 数据集的介绍

丹摩智算平台官方网站的介绍

丹摩智算平台(DAMODEL)是专为人工智能(AI)开发者打造的高性能计算服务平台,旨在提供丰富的算力资源和基础设施,助力AI应用的开发、训练和部署。
在这里插入图片描述

平台特色

  • 超友好:平台配备124GB大内存和100GB系统盘,支持一键部署,三秒启动,使AI开发更加便捷。

  • 资源丰富:从入门级到专业级GPU全覆盖,满足不同层次开发者的需求。

  • 性能强劲:自建数据中心,采用全新GPU,确保每位开发者都能体验顶级计算性能和专属服务。

  • 价格实惠:提供超低价格的优质算力服务,注册即送优惠券,并有各类社区优惠活动。

主要功能

  • 云端开发环境:提供基于VSCode的Cloud IDE,支持高效的文件搜索、Git版本控制、调试、数据库、终端和在线预览等功能,用户可随时随地进行开发。

  • 丰富的模板:支持多种编程语言和框架,如Python、Java、HTML/CSS/JS、PHP、Go,以及VueJS、React、Next.js、Nuxt.js等,方便用户快速启动项目。

  • AI编程助手:内置AI辅助编程功能,可实现添加注释、解释代码、完成代码、寻找错误、优化代码、添加测试和代码提问等,提升开发效率。

  • 社区支持:用户可将项目发布到社区,与他人分享和学习,促进知识交流和合作。

  • 快速部署:支持一键部署开发的应用或直接部署GitHub上的应用,提供独立域名访问,并保持应用永久在线。

  • AI绘画:提供在线的Stable Diffusion模型,可一键启动WebUI进行AI绘画,操作简单。

使用体验

用户反馈显示,丹摩智算平台操作简洁,资源丰富,性能强劲,性价比高,适合AI开发者进行模型训练、推理和部署等任务。
总结

丹摩智算平台为AI开发者提供了高效、便捷、经济的计算资源和开发环境,助力AI项目的快速推进。

Faster-Rcnn-训练与测试

提前准备

我们先登录进行实例的创建
丹摩DAMODEL
点击创建实例
在这里插入图片描述
我们选择这个-----8NVIDIA-GeForce-RTX-4090
在这里插入图片描述
在基础镜像中选择这个镜像
在这里插入图片描述

然后我们进行密钥的创建
在这里插入图片描述
输入自定义的名字然后点击创建就完成了密钥的创建了
在这里插入图片描述
然后我们选择刚刚创建的密钥
在这里插入图片描述
点击右下角进行创建
在这里插入图片描述
等待几分钟就这个实例就创建好了
在这里插入图片描述
这个样子就说明我们的实例创建好了
在这里插入图片描述

当实例创建好了之后,我们一个软件的下载
mobaxterm(远程连接服务器)

在这里插入图片描述

我们在下载的时候将这个创建实例的页面将访问链接进行复制
我的访问链接是

ssh -p 41731 root@cn-north-b.ssh.damodel.com

在这里插入图片描述
然后我们打开我们下载好的MobaXterm

在这里插入图片描述

按照下面的图片依次进行点击

在这里插入图片描述
输入我们的刚刚复制的访问链接
选择我们的密钥,我们在创建的时候是会将密钥进行下载的,我们找到密钥的位置进行选择就行了
在这里插入图片描述
进去之后我们输入root然后进行回车的操作
如果是下面的样子的话就是登录成功了
在这里插入图片描述

那么这个就说明我们已经登录成功了
然后我们进行一些准备

进行Faster-rcnn 的环境配置

需要下载的代码的链接
下载好后将我们的代码文件拖入/root/workspace/目录下,然后解压
输入下面的命令

unzip mmdetection-3.3.0.zip

然后我们进行环境的配置操作

# 安装mmcv包
pip install mmcv==2.1.0 -f https://download.openmmlab.com/mmcv/dist/cu121/torch2.1/index.html -i https://mirrors.aliyun.com/pypi/simple/# 从源码安装mmdetection-3.3.0
cd mmdetection-3.3.0
pip install -r requirements/build.txt -i https://pypi.tuna.tsinghua.edu.cn/simple/
pip install -v -e ./ -i https://pypi.tuna.tsinghua.edu.cn/simple/# 安装必要包
pip install numpy==1.24.4 -i https://pypi.tuna.tsinghua.edu.cn/simple/
pip install setuptools==69.5.1 -i https://pypi.tuna.tsinghua.edu.cn/simple/
pip install instaboostfast -i https://pypi.tuna.tsinghua.edu.cn/simple/# 安装全景分割依赖panopticapi
cd panopticapi
pip install -e . -i https://pypi.tuna.tsinghua.edu.cn/simple/
cd ..# 安装 LVIS 数据集依赖
cd lvis-api
pip install -e . -i https://pypi.tuna.tsinghua.edu.cn/simple/
cd ..# 安装 albumentations 依赖
pip install -r requirements/albu.txt -i https://pypi.tuna.tsinghua.edu.cn/simple/
pip install mmengine -i https://pypi.tuna.tsinghua.edu.cn/simple/

然后你的页面就是这样的
在这里插入图片描述
安装好环境之后我们可以输入命令进行测试一下

python 1.py

然后就是这样的
在这里插入图片描述

数据集的介绍

  1. 数据集介绍:COCOMini 数据集用于计算机视觉任务,包含目标检测、实例分割、关键点检测和图像分类等应用。

  2. 特点与组成部分

    • 多标注:支持多个对象类别的标注,适合上下文理解研究。
    • 多样性和复杂性:覆盖多种生活场景(从室内到室外,从城市到自然),提供了丰富的视觉多样性。
    • 详细的注释:对象实例有精确的边界框和分割掩码,以及人体关键点标注。
    • 80 个对象类别:包括常见的物体类别,如人、动物、交通工具和家具等。
      然后我们就可以开始后续的测试了
python ./tools/train.py ./checkpoints/faster-rcnn_r50_fpn_1x_coco.py

会自动进行权重的下载的,咱们稍等下就好了
在这里插入图片描述

# 经过训练,我们得到pth权重,通过pth权重预测我们的数据集,左侧为真实物体的位置,右侧为预测结果。
# 我们这里直接使用训练好的权重进行预测python tools/test.py ./checkpoints/faster-rcnn_r50_fpn_1x_coco.py ./checkpoints/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth --show-dir /root/workspace/mmdetection-3.3.0/result/

在这里插入图片描述
在这里插入图片描述
至此我们的实验结束

http://www.lryc.cn/news/481079.html

相关文章:

  • 星期-时间范围选择器 滑动选择时间 最小粒度 vue3
  • 一条SQL查询语句的执行流程(MySQL)
  • linux基础——详细篇
  • 大数据学习10之Hive高级
  • MongoDB笔记01-概念与安装
  • ollama + fastGPT + m3e 本地部署指南
  • 【设计模式系列】享元模式(十五)
  • 2024大兴区火锅美食节即将开幕——品味多元火锅,点燃冬季消费热潮
  • 可视化建模与UML《类图实验报告》
  • VS2022项目配置笔记
  • springboot029基于springboot的网上购物商城系统
  • 网站访问在TCP/IP四层模型中的流程
  • C++笔记---包装器
  • 算力与能量的全分布式在线共享来降低5G网络的用电成本。基于随机对偶次梯度法的多时隙约束耦合问题解耦方法示例;随机对偶次梯度法的在线管理策略
  • 海鲜特写镜头视频素材去哪找 热门视频素材网站分享
  • JMM内存模型(面试回答)
  • Greiner 经典力学(多体系统和哈密顿力学)第十二章 学习笔记(Rotation About a Point)
  • SQL进阶技巧:如何计算复合增长率?
  • 十一:java web(3)-- Spring框架 -- Spring简介
  • ts 如何配置引入 json 文件
  • LeetCode面试经典150题C++实现,更新中
  • 基于springboot的家装平台设计与实现
  • CSS的配色
  • Parallax.js:让智能设备视差效果更智能、更自然
  • 一文熟悉新版llama.cpp使用并本地部署LLAMA
  • vue/react做多语言国际化的时候,在语言配置中不同的语言配置不同的字体,动态引入scss里面
  • Unity——鼠标点击信息和当前位置获取
  • vue 2的v-***关键字作用及使用场景
  • Matlab实现鲸鱼优化算法优化随机森林算法模型 (WOA-RF)(附源码)
  • 【Android】ubutun 创建Androidstudio桌面快捷方式