当前位置: 首页 > news >正文

【大数据学习 | kafka】简述kafka的消费者consumer

1. 消费者的结构

能够在kafka中拉取数据进行消费的组件或者程序都叫做消费者。

这里面要涉及到一个动作叫做拉取。

首先我们要知道kafka这个消息队列主要的功能就是起到缓冲的作用,比如flume采集数据然后交给spark或者flink进行计算分析,但是flume采用的就是消息的push方式,这个方式不能够保证推送的数据消费者端一定会消费完毕,会出现数据的反压问题,这个问题很难解决,所以才出现了消息队列kafka,它可以起到一个缓冲的作用,生产者部分将数据直接全部推送到kafka,然后消费者从其中拉取数据,这边如果也采用推送的方式,那么也就在计算端会出现反压问题,所以kafka的消费者一般都是采用拉的方式pull,并不是push

1.1 消费者组

在一个topic中存在多个分区,可以分摊压力实现负载均衡,那么整体topic中的数据会很多,如果消费者只有一个的话很难全部消费其中的数据压力也会集中在一个消费者中,并且在大数据行业中几乎所有的计算架构都是分布式的集群模式,那么这个集群模式中,计算的节点也会存在多个,这些节点都是可以从kafka中拉取数据的,所有消费者不可能只有一个,一般情况下都会有多个消费者。

正因为topic存在多个分区,每个分区中的数据是独立的,那么消费者最好也是一个一个和分区进行一一对应的,所以有几个分区应该对应存在几个消费者是最好的。

这个和分蛋糕是一样的,一个蛋糕分成几块,那么有几个人吃,应该是对应关系的

消费者组内每个消费者负责消费不同分区的数据,一个分区只能由一个组内消费者消费。

消费者组之间互不影响。所有的消费者都属于某个消费者组,即消费者组是逻辑上的一个订阅者。

2. 消费者实现

在实现消费者的时候我们需要知道几个消费者的配置重要参数

参数解释
bootstrap.servers集群地址
key.deserializerkey反序列化器
value.deserializervalue反序列化器
group.id消费者组id

首先创建消费者对象

消费者对象订阅相应的topic然后拉取其中的数据进行消费

整体代码如下

import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;
import org.apache.kafka.common.serialization.StringDeserializer;import java.time.Duration;
import java.util.Arrays;
import java.util.Iterator;
import java.util.List;
import java.util.Properties;public class Consumer1 {public static void main(String[] args) {Properties pro = new Properties();pro.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG,"nn1:9092");pro.put(ConsumerConfig.GROUP_ID_CONFIG,"hainiu_group");//设定组idpro.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());//设定key的反序列化器pro.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());//设定value的反序列化器KafkaConsumer<String, String> consumer = new KafkaConsumer<String, String>(pro);List<String> topics = Arrays.asList("topic_a","topic_b");//一个消费者可以消费多个分区的数据consumer.subscribe(topics);//订阅这个topicwhile (true){//死循环要一直消费数据ConsumerRecords<String, String> records = consumer.poll(Duration.ofSeconds(1));//间隔一秒钟消费一次数据,拉取一批数据过来Iterator<ConsumerRecord<String, String>> it = records.iterator();while(it.hasNext()){ConsumerRecord<String, String> record = it.next();System.out.println(record.topic()+"->"+record.partition()+"->"+ record.offset()+"->"+record.key()+"->"+record.value());}}}
}
[hexuan@hadoop106 datas]$ kafka-console-producer.sh --bootstrap-server hadoop106:9092 --topic topic_b>>1
>2
>3
>4
>5
>

3. 消费者与分区之间的对应关系

一个消费者组中的消费者和分区是一一对应的关系,一个分区应该对应一个消费者,但是如果消费者多了,那么有的消费者就没有分区消费,如果消费者少了那么会出现一个消费者消费多个分区的情况。

# 首先创建topic_c 用于测试分区和消费者的对应关系
kafka-topics.sh --bootstrap-server hadoop106:9092 --create --topic topic_c --partitions 3 --replication-factor 2
# 启动两个消费者 刚才我们写的消费者main方法运行两次
# 然后分别在不同的分区使用生产者发送数据,看数据在消费者中的打印情况

首先选择任务可以并行执行

选择任务修改配置

我们可以看到允许多实例并行执行

启动两次,这个时候我们就有了两个消费者实例

生产者线程:分别向三个分区中发送1 2 3元素

package com.hainiu.kafka.consumer;/*** ClassName : test3_producer* Package : com.hainiu.kafka.consumer* Description** @Author HeXua* @Create 2024/11/3 23:40* Version 1.0*/import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerConfig;
import org.apache.kafka.clients.producer.ProducerRecord;
import org.apache.kafka.common.serialization.StringSerializer;import java.util.Properties;public class test3_producer {public static void main(String[] args) {Properties pro = new Properties();pro.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,"hadoop106:9092");pro.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());pro.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());KafkaProducer<String, String> producer = new KafkaProducer<String, String>(pro);ProducerRecord<String, String> record1 = new ProducerRecord<>("topic_d", 0,null,"1");ProducerRecord<String, String> record2 = new ProducerRecord<>("topic_d", 1,null,"2");ProducerRecord<String, String> record3 = new ProducerRecord<>("topic_d", 2,null,"3");producer.send(record1);producer.send(record2);
//        producer.send(record3);producer.close();}
}

可以看到有的消费者消费了两个分区的数据

如果启动三个消费者会发现每个人消费一个分区的数据

如果启动四个消费者

我们发现有一个消费者没有数据

3. 1 消费多topic的数据

不同组消费不同的topic或者一个组可以消费多个topic都是可以的

3.2 多个组消费一个topic

同一个topic可以由多个消费者组进行消费数据,并且相互之间是没有任何影响的

修改同一份代码的组标识不同。启动两个实例查看里面的消费信息

   pro.put(ConsumerConfig.GROUP_ID_CONFIG,"hainiu_group1");pro.put(ConsumerConfig.GROUP_ID_CONFIG,"hainiu_group2");//分别修改消费者组的id不同
package com.hainiu.kafka;import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;
import org.apache.kafka.common.serialization.StringDeserializer;import java.time.Duration;
import java.util.Arrays;
import java.util.Iterator;
import java.util.List;
import java.util.Properties;public class Consumer1 {public static void main(String[] args) {Properties pro = new Properties();pro.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG,"nn1:9092");pro.put(ConsumerConfig.GROUP_ID_CONFIG,"hainiu_group");pro.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());pro.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());KafkaConsumer<String, String> consumer = new KafkaConsumer<String, String>(pro);List<String> topics = Arrays.asList("topic_c");//订阅多个topic的数据变化consumer.subscribe(topics);while (true){ConsumerRecords<String, String> records = consumer.poll(Duration.ofSeconds(1));Iterator<ConsumerRecord<String, String>> it = records.iterator();while(it.hasNext()){ConsumerRecord<String, String> record = it.next();System.out.println(record.topic()+"->"+record.partition()+"->"+ record.offset()+"->"+record.key()+"->"+record.value());}}}
}

http://www.lryc.cn/news/480399.html

相关文章:

  • 系统架构设计师论文:论湖仓一体架构及其应用
  • 电磁兼容(EMC):GB 4343.1喀呖声 详解
  • 纯血鸿蒙Native层支持说明
  • learn C++ NO.31——类型转换
  • 重学 Android 自定义 View 系列(三):自定义步数进度条
  • 海南华志亿星电子商务有限公司赋能抖音商家成长
  • 数据结构-并查集专题(1)
  • 共享汽车管理新纪元:SpringBoot框架应用
  • 道可云人工智能元宇宙每日资讯|《中国生成式人工智能应用与实践展望》白皮书发布
  • kaggle学习 eloData项目(1)-数据校验
  • ORACLE RAC用DNS服务器的配置
  • vue3 + vite 实现版本更新检查(检测到版本更新时提醒用户刷新页面)
  • 【CSP】爆零的独特姿势
  • Git仓库
  • 【科研日常】论文投稿的几大状态
  • SSLHandshakeException错误解决方案
  • python数据结构基础(7)
  • 【系统集成项目管理工程师】英语词汇对照表-项目管理类
  • 购物车-多元素组合动画css
  • 【计网不挂科】计算机网络期末考试——【选择题&填空题&判断题&简述题】题库(3)
  • [ vulnhub靶机通关篇 ] 渗透测试综合靶场 DarkHole:1 通关详解 (附靶机搭建教程)
  • 【LeetCode】移除链表中等于设定值的元素、反转链表
  • Redis - 主从复制
  • UE5 HLSL 学习笔记
  • 一个简单ASP.NET购物车设计
  • 双向循环列表
  • go项目出现了ambiguous import要怎么解决?
  • 更改Ubuntu22.04锁屏壁纸
  • ROS2humble版本使用colcon构建包
  • CSRF 跨站请求伪造的实现原理和预防措施