当前位置: 首页 > news >正文

BO-CNN-LSTM回归预测 | MATLAB实现BO-CNN-LSTM贝叶斯优化卷积神经网络-长短期记忆网络多输入单输出回归预测

BO-CNN-LSTM回归预测 | MATLAB实现BO-CNN-LSTM贝叶斯优化卷积神经网络-长短期记忆网络多输入单输出回归预测

目录

    • BO-CNN-LSTM回归预测 | MATLAB实现BO-CNN-LSTM贝叶斯优化卷积神经网络-长短期记忆网络多输入单输出回归预测
      • 效果一览
      • 基本介绍
      • 模型搭建
      • 程序设计
      • 参考资料

效果一览

1
2
3

4
5
6
7
8

基本介绍

MATLAB实现BO-CNN-LSTM贝叶斯优化卷积神经网络-长短期记忆网络多输入单输出回归预测。基于贝叶斯(bayes)优化卷积神经网络-长短期记忆网络(CNN-LSTM)回归预测,BO-CNN-LSTM/Bayes-CNN-LSTM多输入单输出模型。
1.优化参数为:学习率,隐含层节点,正则化参数。
2.评价指标包括:R2、MAE、MSE、RMSE和MAPE等。
3.运行环境matlab2020b及以上。

模型搭建

  • CNN-LSTM模型结合了CNN和LSTM的优点,CNN-LSTM网络模型如图1所示,本文使用的CNN-LSTM模型的第一部分是由卷积层和最大值组成的CNN部分池化层,对原始数据进行预处理并输入CNN卷积层,利用卷积核自适应提取生命特征,卷积层将遍历输入信息,将卷积核权重与局部序列进行卷积运算体管信息得到初步的特征矩阵,比原始序列数据(矩阵)更具表现力。
  • 本文使用的池化层是最大池化层,池化操作对提取的特征进行数据降维,避免模型过拟合,保留主要特征。最大池化层将前一个卷积层得到的特征矩阵作为输入,在这个矩阵上滑动一个池化窗口,在每一次滑动中取池化窗口的最大值,输出一个更具表现力的特征矩阵。
  • 池化后,连接一个 LSTM 层,提取相关向量由CNN构造成一个长期的时间序列作为LSTM的输入数据。卷积层将卷积层的数据展平(Flatten),模型中加入Flatten,将(height,width,channel)的数据压缩成一个长高宽通道的一维数组,然后我们可以添加直接密集层。
  • 对卷积池化数据压缩特征操作,多个卷积特征提取框架提取的特征融合或从输出层融合,全连接层聚合学习到的特征,激活函数使用Relu。
  • 通常,在模型训练过程中需要对超参数进行优化,为模型选择一组最优的超参数,以提高预测的性能和有效性。 凭经验设置超参数会使最终确定的模型超参数组合不一定是最优的,这会影响模型网络的拟合程度及其对测试数据的泛化能力。

8

  • 伪代码
    9

10

  • 通过调整优化算法调整模型参数,学习重复率和贝叶斯优化超参数来调整模型参数。

程序设计

  • 完整程序和数据下载方式(资源处直接下载):MATLAB实现BO-CNN-LSTM贝叶斯优化卷积神经网络-长短期记忆网络多输入单输出回归预测
%%  优化算法参数设置
%参数取值上界(学习率,隐藏层节点,正则化系数)
%%  贝叶斯优化参数范围
optimVars = [optimizableVariable('NumOfUnits', [10, 50], 'Type', 'integer')optimizableVariable('InitialLearnRate', [1e-3, 1], 'Transform', 'log')optimizableVariable('L2Regularization', [1e-10, 1e-2], 'Transform', 'log')];%%  贝叶斯优化网络参数
bayesopt(fitness, optimVars, ...    % 优化函数,和参数范围'MaxTime', Inf, ...                      % 优化时间(不限制) 'IsObjectiveDeterministic', false, ...'MaxObjectiveEvaluations', 10, ...       % 最大迭代次数'Verbose', 1, ...                        % 显示优化过程'UseParallel', false);%%  得到最优参数
NumOfUnits       = BayesObject.XAtMinEstimatedObjective.NumOfUnits;       % 最佳隐藏层节点数
InitialLearnRate = BayesObject.XAtMinEstimatedObjective.InitialLearnRate; % 最佳初始学习率
L2Regularization = BayesObject.XAtMinEstimatedObjective.L2Regularization; % 最佳L2正则化系数
%% 创建混合CNN-LSTM网络架构
% 输入特征维度
numFeatures  = f_;
% 输出特征维度
numResponses = 1;
FiltZise = 10;
%  创建"CNN-LSTM"模型layers = [...% 输入特征sequenceInputLayer([numFeatures 1 1],'Name','input')sequenceFoldingLayer('Name','fold')% CNN特征提取convolution2dLayer([FiltZise 1],32,'Padding','same','WeightsInitializer','he','Name','conv','DilationFactor',1);batchNormalizationLayer('Name','bn')eluLayer('Name','elu')averagePooling2dLayer(1,'Stride',FiltZise,'Name','pool1')% 展开层sequenceUnfoldingLayer('Name','unfold')% 平滑层flattenLayer('Name','flatten')% LSTM特征学习lstmLayer(50,'Name','lstm1','RecurrentWeightsInitializer','He','InputWeightsInitializer','He')% LSTM输出lstmLayer(NumOfUnits,'OutputMode',"last",'Name','bil4','RecurrentWeightsInitializer','He','InputWeightsInitializer','He')dropoutLayer(0.25,'Name','drop3')% 全连接层fullyConnectedLayer(numResponses,'Name','fc')regressionLayer('Name','output')    ];layers = layerGraph(layers);layers = connectLayers(layers,'fold/miniBatchSize','unfold/miniBatchSize');%% CNNLSTM训练选项
% 批处理样本
% 最大迭代次数
%% 训练混合网络
net = trainNetwork(XrTrain,YrTrain,layers,options);

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229

http://www.lryc.cn/news/479783.html

相关文章:

  • DataWind将字符串数组拆出多行的方法
  • try...catch 和then...catch的异同点分析
  • Mit6.S081-实验环境搭建
  • 以太网交换安全:MAC地址漂移
  • STM32实现串口接收不定长数据
  • AAA 数据库事务隔离级别及死锁
  • 外接数据库给streamlit等web APP带来的变化
  • Gitpod: 我们正在离开 Kubernetes
  • 1.每日SQL----2024/11/7
  • 普通一本大二学生,软件工程,想考研985,想知道哪个大学的软件工程好,又不至于完全考不起的?
  • 「QT」几何数据类 之 QMatrix4x4 4x4矩阵类
  • 让Apache正确处理不同编码的文件避免中文乱码
  • 人员密集场所遇到突发火灾事故该如何应对
  • 使用QtWebEngine的Mac应用如何发布App Store
  • 微机原理与接口技术——中断系统与可编中断控制芯片8259A
  • 【JavaEE初阶 — 多线程】Thread类的方法&线程生命周期
  • 面试题分享11月7日
  • 数据结构_哈夫曼树及其应用
  • 从0开始学习机器学习--Day19--学习曲线
  • 2.索引:深入解析 B+ 树:原理、MySQL 应用及与其他数据结构的对比
  • [全网最细数据结构完整版]第六篇:3分钟带你吃透栈并模拟实现
  • 如何在 Docker 容器中启动 X11 图形界面程序
  • pycharm保存是自动格式化
  • .netCore WebAPI中字符串加密与解密
  • Next.js + Move 石头剪刀布
  • [面试]关于Redis 的持久化你了解吗
  • Systemd:tmpfiles
  • 【Flutter 内嵌 android 原生 View以及相互跳转】
  • python externally-managed-environment 外部管理环境
  • 前端 | MYTED单篇TED词汇学习功能优化