当前位置: 首页 > news >正文

聚划算!Transformer-LSTM、Transformer、CNN-LSTM、LSTM、CNN五模型多变量回归预测

聚划算!Transformer-LSTM、Transformer、CNN-LSTM、LSTM、CNN五模型多变量回归预测

目录

    • 聚划算!Transformer-LSTM、Transformer、CNN-LSTM、LSTM、CNN五模型多变量回归预测
      • 预测效果
      • 基本介绍
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

聚划算!Transformer-LSTM、Transformer、CNN-LSTM、LSTM、CNN五模型多变量回归预测
Transformer-LSTM、Transformer、CNN-LSTM、LSTM、CNN五模型多变量回归预测 (Matlab2023b 多输入单输出)
Transformer-LSTM:结合了 Transformer 和 LSTM 的模型,Transformer 主要处理序列中的全局依赖关系,而 LSTM 则更专注于序列中的局部依赖关系。这种组合可能在某些数据集上提供更好的性能。
Transformer:Transformer 是一种基于自注意力机制的模型,适用于处理序列数据。它在处理长距离依赖性和并行化方面表现出色。
CNN-LSTM:CNN-LSTM 结合了卷积神经网络 (CNN) 和长短期记忆网络 (LSTM),CNN 用于提取特征,LSTM 用于处理序列数据。
LSTM:长短期记忆网络是一种适用于处理序列数据的循环神经网络,能够捕捉长期依赖关系,常用于序列预测等任务。
CNN:卷积神经网络通常用于处理图像数据,但也可以在序列数据上表现良好,特别是在捕捉局部模式和特征方面具有优势。
1.程序已经调试好,替换数据集后,仅运行一个main即可运行,数据格式为excel!!!
2.Transformer-LSTM、Transformer、CNN-LSTM、LSTM、CNN五模型多变量回归预测 (Matlab2023b 多输入单输出)。
3.运行环境要求MATLAB版本为2023b及其以上。
4.评价指标包括:R2、MAE、MSE、RPD、RMSE、MAPE等,图很多,符合您的需要代码中文注释清晰,质量极高。

在这里插入图片描述

程序设计

  • 完整源码和数据获取方式私信回复Transformer-LSTM、Transformer、CNN-LSTM、LSTM、CNN五模型多变量回归预测。
%% 预测
t_sim1 = predict(net, p_train); 
t_sim2 = predict(net, p_test ); %%  数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);%%  均方根误差
error1 = sqrt(sum((T_sim1' - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2' - T_test ).^2) ./ N);%%  相关指标计算
%  R2
R1 = 1 - norm(T_train - T_sim1')^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test  - T_sim2')^2 / norm(T_test  - mean(T_test ))^2;disp(['训练集数据的R2为:', num2str(R1)])
disp(['测试集数据的R2为:', num2str(R2)])%  MAE
mae1 = sum(abs(T_sim1' - T_train)) ./ M ;
mae2 = sum(abs(T_sim2' - T_test )) ./ N ;disp(['训练集数据的MAE为:', num2str(mae1)])
disp(['测试集数据的MAE为:', num2str(mae2)])%% 平均绝对百分比误差MAPE
MAPE1 = mean(abs((T_train - T_sim1')./T_train));
MAPE2 = mean(abs((T_test - T_sim2')./T_test));disp(['训练集数据的MAPE为:', num2str(MAPE1)])
disp(['测试集数据的MAPE为:', num2str(MAPE2)])%  MBE
mbe1 = sum(abs(T_sim1' - T_train)) ./ M ;
mbe2 = sum(abs(T_sim1' - T_train)) ./ N ;disp(['训练集数据的MBE为:', num2str(mbe1)])
disp(['测试集数据的MBE为:', num2str(mbe2)])%均方误差 MSE
mse1 = sum((T_sim1' - T_train).^2)./M;
mse2 = sum((T_sim2' - T_test).^2)./N;disp(['训练集数据的MSE为:', num2str(mse1)])
disp(['测试集数据的MSE为:', num2str(mse2)])

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

http://www.lryc.cn/news/477653.html

相关文章:

  • 信息安全工程师(76)网络安全应急响应技术原理与应用
  • 使用 OpenCV 实现图像的透视变换
  • openGauss数据库-头歌实验1-4 数据库及表的创建
  • 吉利极氪汽车嵌入式面试题及参考答案
  • pycharm中的服务是什么?
  • [Unity Demo]从零开始制作空洞骑士Hollow Knight第十七集:制作第二个BOSS燥郁的毛里克
  • 深度解析阿里的Sentinel
  • Linux系统-日志轮询(logrotate)
  • 机器学习在时间序列预测中的应用与实现——以电力负荷预测为例(附代码)
  • 白杨SEO:百度在降低个人备案类网站搜索关键词排名和流量?怎样应对?【参考】
  • 前端实现json动画(附带示例)
  • AI 写作(一):开启创作新纪元(1/10)
  • C#-类:索引器
  • Neo4j Cypher WHERE子句详解 - 初学者指南
  • 【CSS】标准怪异盒模型
  • 栈详解
  • 硬盘 <-> CPU, CPU <-> GPU 数据传输速度
  • 数据编排与ETL有什么关系?
  • 来了解一下!!!——React
  • 用vite创建项目
  • json-server的使用(根据json数据一键生成接口)
  • 半波正弦信号的FFT变换
  • Python数据分析NumPy和pandas(二十三、数据清洗与预处理之五:pandas的分类类型数据)
  • redis源码系列--(二)--multi/exec/eval命令执行流程
  • 【力扣打卡系列】移动零(双指针)
  • 无源元器件-电容选型参数总结
  • Linux下的socket编程
  • 【算法】Floyd多源最短路径算法
  • iOS SmartCodable 替换 HandyJSON 适配记录
  • 使用 axios 拦截器实现请求和响应的统一处理(附常见面试题)