当前位置: 首页 > news >正文

【数据结构二叉树】C非递归算法实现二叉树的先序、中序、后序遍历

引言:

遍历二叉树:指按某条搜索路径巡访二叉树中每个结点,使得每个结点均被访问一次,而且仅被访问一次。
除了层次遍历外,二叉树有三个重要的遍历方法:先序遍历、中序遍历、后序遍历。
1、递归算法实现先序、中序、后序遍历:

(1)先序遍历:

void PreOrderTraverse(BiTree T)
{if(T){cout<<T->data;PreOrderTraverse(T->lchild);PreOrderTraverse(T->rchild);}
}

(2)中序遍历:

void InOrderTraverse(BiTree T)
{   if(T){InOrderTraverse(T->lchild);cout<<T->data;InOrderTraverse(T->rchild);}
} 

(3)后序遍历

void PostOrderTraverse(BiTree T)
{   if(T){  PostOrderTraverse(T->lchild); PostOrderTraverse(T->rchild); cout<<T->data;   }
} 

2.非递归算法实现先序、中序、后序遍历:

采用非递归算法则需要利用栈来实现对二叉树的遍历:
(1)先序遍历非递归算法

void  PreOrder_non_recursion(BiTree T)//先序遍历的非递归算法 
{LinkStack S;InitStack (S);   BiTree p,q;p=T;while(p||!StackEmpty(S)){if(p){Push(S,*p); cout<<p->data; //访问根节点 p=p->lchild;   //遍历左子树 }else{Pop(S,*q);p=q->rchild;   //遍历右子树 }}
}

(2)中序遍历非递归算法

void  InOrder_non_recursion(BiTree T)//中序遍历的非递归算法 
{LinkStack S;InitStack (S);   BiTree p;    BiTree q; p=T;while(p||!StackEmpty(S)){if(p){Push(S,*p); p=p->lchild;   //遍历左子树 }else{Pop(S,*q);cout<<q->data; //访问根节点 p=q->rchild;   //遍历右子树 }}
}

(3)后序遍历非递归算法
(采用非递归算法实现对二叉树的后序遍历,会稍微复杂一些,本算法借用了两个栈结构)

void  PostOrder_non_recursion(BiTree T)//后序遍历的非递归算法 
{LinkStack l_S,r_S;InitStack (l_S);InitStack (r_S);BiTree p,q;    p=T;Push(l_S,*p);while(!StackEmpty(l_S)){Pop(l_S, *q);Push(r_S,*q);if(q->lchild){Push(l_S, *q->lchild);}if(q->rchild){Push(l_S,*q->rchild);}}while(!StackEmpty(r_S)){Pop(r_S,*q);cout<<q->data;}
}

3.完整代码

1、采用按照先序遍历的顺序建立二叉链表,用‘#’表示空树。如图所示:
在这里插入图片描述
2、先序遍历的递归与非递归算法的对比:

#include<iostream>
#define OK 1
#define ERROR 0
#define OVERFLOW -2
using namespace std;
typedef char TElemType;
typedef int Status;typedef struct BiTNode{  //二叉树的存储结构TElemType   data;	// 数据域struct  BiTNode *lchild; //左孩子指针struct  BiTNode *rchild; //右孩子指针
}BiTNode, *BiTree;typedef struct StackNode {  //栈的存储结构BiTNode data;       //栈数据元素类型为树结点型 struct StackNode *next;
} StackNode, *LinkStack;Status InitStack(LinkStack &S) { //栈初始化S = NULL;return OK;
}Status Push(LinkStack &S, BiTNode e) { //入栈LinkStack p;p = new StackNode; //生成新结点if (!p) {return OVERFLOW;}p->data = e; //将新结点数据域置为ep->next = S; //将新结点插入栈顶S = p; //修改栈顶指针为preturn OK;
}Status Pop(LinkStack &S, BiTNode &e) {  //出栈LinkStack p;if (S == NULL)return ERROR; //栈空e = S->data; //将栈顶元素赋给ep = S; //用p临时保存栈顶元素空间,以备释放S = S->next; //修改栈顶指针delete p; //释放原栈顶元素的空间return OK;
}bool StackEmpty(LinkStack S) {  //判断是否空栈if (!S)return true;return false;
}void CreateBiTree_PreOrder(BiTree &T){ //以先序次序创建二叉树 char ch; cin>>ch;if(ch=='#')T=NULL; else{T=new BiTNode;  //生成根结点T->data=ch; //根结点的数据域置为chCreateBiTree_PreOrder(T->lchild);//构造左子树CreateBiTree_PreOrder(T->rchild); //构造右子树}}void PreOrder(BiTree T){   //先序遍历的递归递归算法if(T){cout<<T->data;PreOrder(T->lchild);PreOrder(T->rchild);}
}void  PreOrder_non_recursion(BiTree T)//先序遍历的非递归算法 
{LinkStack S;InitStack (S);   BiTree p,q;p=T;while(p||!StackEmpty(S)){if(p){Push(S,*p); cout<<p->data; //访问根节点 p=p->lchild;   //遍历左子树 }else{Pop(S,*q);p=q->rchild;   //遍历右子树 }}
}int main() {BiTree T;cout<<"以先序次序创建二叉链表,以#表示空子树:"<<endl;CreateBiTree_PreOrder(T);cout<<"先序序列(递归算法):"; PreOrder(T); cout<<"\n先序序列(非递归算法):"; PreOrder_non_recursion(T);return 0;
}

实验结果:
在这里插入图片描述
3、中序遍历的递归与非递归算法的对比:

#include<iostream>
#define OK 1
#define ERROR 0
#define OVERFLOW -2
using namespace std;
typedef char TElemType;
typedef int Status;typedef struct BiTNode{  //二叉树的存储结构TElemType   data;	// 数据域struct  BiTNode *lchild; //左孩子指针struct  BiTNode *rchild; //右孩子指针
}BiTNode, *BiTree;typedef struct StackNode {  //栈的存储结构BiTNode data;       //栈数据元素类型为树结点型 struct StackNode *next;
} StackNode, *LinkStack;Status InitStack(LinkStack &S) { //栈初始化S = NULL;return OK;
}Status Push(LinkStack &S, BiTNode e) { //入栈LinkStack p;p = new StackNode; //生成新结点if (!p) {return OVERFLOW;}p->data = e; //将新结点数据域置为ep->next = S; //将新结点插入栈顶S = p; //修改栈顶指针为preturn OK;
}Status Pop(LinkStack &S, BiTNode &e) {  //出栈LinkStack p;if (S == NULL)return ERROR; //栈空e = S->data; //将栈顶元素赋给ep = S; //用p临时保存栈顶元素空间,以备释放S = S->next; //修改栈顶指针delete p; //释放原栈顶元素的空间return OK;
}bool StackEmpty(LinkStack S) {  //判断是否空栈if (!S)return true;return false;
}void CreateBiTree_PreOrder(BiTree &T){ //以先序次序创建二叉树 char ch; cin>>ch;if(ch=='#')T=NULL; else{T=new BiTNode;  //生成根结点T->data=ch; //根结点的数据域置为chCreateBiTree_PreOrder(T->lchild);//构造左子树CreateBiTree_PreOrder(T->rchild); //构造右子树}}void InOrder(BiTree T){   //中序遍历的递归递归算法if(T){InOrder(T->lchild);cout<<T->data;InOrder(T->rchild);}
}void  InOrder_non_recursion(BiTree T)//中序遍历的非递归算法 
{LinkStack S;InitStack (S);   BiTree p;    BiTree q; p=T;while(p||!StackEmpty(S)){if(p){Push(S,*p); p=p->lchild;   //遍历左子树 }else{Pop(S,*q);cout<<q->data; //访问根节点 p=q->rchild;   //遍历右子树 }}
}int main() {BiTree T;cout<<"以先序次序创建二叉链表,以#表示空子树:"<<endl;CreateBiTree_PreOrder(T);cout<<"中序序列(递归算法):"; InOrder(T); cout<<"\n中序序列(非递归算法):"; InOrder_non_recursion(T);return 0;
}

实验结果:
在这里插入图片描述

4、后序遍历的递归与非递归算法的对比:

#include<iostream>
#define OK 1
#define ERROR 0
#define OVERFLOW -2
using namespace std;
typedef char TElemType; 
typedef int Status;typedef struct BiTNode{  //二叉树的存储结构TElemType   data;	// 数据域struct  BiTNode *lchild; //左孩子指针struct  BiTNode *rchild; //右孩子指针
}BiTNode, *BiTree;typedef struct StackNode {  //栈的存储结构BiTNode data;       //栈数据元素类型为树结点型 struct StackNode *next;
} StackNode, *LinkStack;Status InitStack(LinkStack &S) { //栈初始化S = NULL;return OK;
}Status Push(LinkStack &S, BiTNode e) { //入栈LinkStack p;p = new StackNode; //生成新结点if (!p) {return OVERFLOW;}p->data = e; //将新结点数据域置为ep->next = S; //将新结点插入栈顶S = p; //修改栈顶指针为preturn OK;
}Status Pop(LinkStack &S, BiTNode &e) {  //出栈LinkStack p;if (S == NULL)return ERROR; //栈空e = S->data; //将栈顶元素赋给ep = S; //用p临时保存栈顶元素空间,以备释放S = S->next; //修改栈顶指针delete p; //释放原栈顶元素的空间return OK;
}bool StackEmpty(LinkStack S) {  //判断是否空栈if (!S)return true;return false;
}void CreateBiTree_PreOrder(BiTree &T){ //以先序次序创建二叉树 char ch; cin>>ch;if(ch=='#')T=NULL; else{T=new BiTNode;  //生成根结点T->data=ch; //根结点的数据域置为chCreateBiTree_PreOrder(T->lchild);//构造左子树CreateBiTree_PreOrder(T->rchild); //构造右子树}}void PostOrder(BiTree T){   //后序遍历的递归递归算法if(T){PostOrder(T->lchild);PostOrder(T->rchild);cout<<T->data;}
}void  PostOrder_non_recursion(BiTree T)//后序遍历的非递归算法 
{LinkStack l_S,r_S;InitStack (l_S);InitStack (r_S);BiTree p,q;    p=T;Push(l_S,*p);while(!StackEmpty(l_S)){Pop(l_S, *q);Push(r_S,*q);if(q->lchild){Push(l_S, *q->lchild);}if(q->rchild){Push(l_S,*q->rchild);}}while(!StackEmpty(r_S)){Pop(r_S,*q);cout<<q->data;}
}int main() {BiTree T;cout<<"以先序次序创建二叉链表,以#表示空子树:"<<endl;CreateBiTree_PreOrder(T);cout<<"后序序列(递归算法):"; PostOrder(T); cout<<"\n后序序列(非递归算法):"; PostOrder_non_recursion(T);return 0;
}

实验结果:
在这里插入图片描述

4.结语

对于先序、中序和后序遍历,如果采用非递归算法,则需要借助栈来实现。对于二叉树而言,还有一种大家更为熟知的遍历方式,那就是层次遍历。实现对二叉树的层次遍历,则需要借助队列来实现。实现对二叉树的层次遍历,可以参考C实现二叉树的层次遍历
欢迎大家一起来交流~

http://www.lryc.cn/news/476391.html

相关文章:

  • 解决网盘资源搜索难题的利器——全面解析哎哟喂啊盘搜及其优秀推荐平台
  • 草料二维码:低成本高效率的访客管理解决方案
  • qt管理系统框架(好看界面、漂亮界面、好看的界面、漂亮的界面)
  • 在VSCode中读取Markdown文件
  • Linux rabbitmq客户端 SimpleAmqpClient 源码编译
  • 一台手机可以登录运营多少个TikTok账号?
  • Python毕业设计选题:基于Hadoop的租房数据分析系统的设计与实现
  • k8s Service四层负载:服务端口暴露
  • QT 关于mousePressEvent无法过滤
  • 【VScode】深度对比:Cursor与VScode(CodeMoss)工具,谁才是你的GPT编程最佳助手?
  • 大数据计算里的-Runtime Filter
  • 【工具变量】大数据管理机构改革DID(2007-2023年)
  • Linux -- 初识信号
  • Ubuntu系统如何实现键盘按键映射到其他按键(以 Ctrl+c 映射到 F3,Ctrl+v 映射到 F4 为例)
  • el-select、el-autocomplete的选项内容过长显示完整内容
  • Go-单元测试
  • 【Linux】IPC 进程间通信(一):管道(匿名管道命名管道)
  • Kotlin类与对象
  • Windows版 nginx安装,启动,目录解析,常用命令
  • 基于51单片机的电子隐形防盗网proteus仿真
  • Fish Agent:多语言 Voice-to-Voice 开源语音模型;Runway 推出摄像机运镜功能丨 RTE 开发者日报
  • locust压测工具环境搭建(Linux、Mac)
  • 欠定方程有多个真正解,超定方程可能无解所以有最小二乘解
  • LeetCode27:移除元素
  • JAVA 插入 JSON 对象到 PostgreSQL
  • 视图,物化视图,普通表区别简介
  • C++ | Leetcode C++题解之第530题二叉搜索树的最小绝对差
  • 使用Node.js构建实时聊天应用
  • STM32F103C8T6学习笔记1--新建工程模板
  • RK3568平台开发系列讲解(内存篇)Linux 内存优化