当前位置: 首页 > news >正文

NSET or MSET算法--原理解析

1.背景

  1. NSET/MSET是一种非线性的多元预测诊断技术,广泛应用于系统状态估计、故障诊断和预测等领域;相比于传统的线性模型和方法,NSET/MSET能够更好地处理非线性系统,并提供更准确的预测和诊断能力。
  2. 在早期,MSET融合了模式识别技术和序贯概率比检验方法,主要应用于核电厂信号验证、仪表精度监控以及组件运行失常等监控场景的研究工作。

2.应用

  1. 工业监控:MSET可用于监测和预测工业设备的状态和性能。通过分析传感器数据和监测参数,MSET可以实时监测设备的运行状态,及时检测异常情况,预测设备故障,并提供预警和维修建议。
  2. 电力系统:MSET可以用于电力系统的状态估计和故障检测。它可以通过分析电力系统中的电流、电压、频率等参数,实时监测电力系统的运行状态,检测潜在的故障或异常情况,并提供故障诊断和恢复策略。

3.概念原理

3.1流程简介

非线性状态估计(NSET)方法是将当前运行数据和已生成的历史运行状态进行对比,计算并比较多状态变量之间的相似度,从而进行故障预警的方法。

3.2流程图

在这里插入图片描述

3.3逐步解析

1)观测矩阵

观测矩阵形象的表示就是一组多变量多步时间数据,其中有m个时间状态,每个时间状态有n个变量数据。
( x 11 x 12 . . . x 1 m x 21 x 22 . . . x 2 m . . . . . . . . . . . . x n 1 x n 2 . . . x n m ) \begin{equation} %开始数学环境 \left( %左括号 \begin{array}{ccc} %该矩阵一共3列,每一列都居中放置 x11 & x12 & ... & x1m\\ %第一行元素 x21 & x22 & ... & x2m\\ %第二行元素 ... & ... & ... & ...\\ xn1 & xn2 & ... & xnm\\ %第二行元素 \end{array} \right) %右括号 \end{equation} x11x21...xn1x12x22...xn2............x1mx2m...xnm

2)训练数据

训练数据K包含系统全范围的动态参数,涵盖的面一定要全,包含了开始运行、运行平稳、运行结束等阶段数据,而且一定不能包含故障数据。
K = [ X ( t 1 + i ) , X ( t 2 + i ) , X ( t k + i ) ] K=[X(t_{1+i}),X(t_{2+i}),X(t_{k+i})] K=[X(t1+i),X(t2+i),X(tk+i)]

3)记忆矩阵

从训练数据中抽取一部分代表性数据,可以组成过程记忆矩阵D,过程记忆矩阵大小为nXd,其中d表示为包含状态的数量,n表示为了观测参数的维度。
( x 1 ( t 1 ) . . . x 1 ( t d ) . . . . . . . . . x n ( t 1 ) . . . x n ( t d ) ) \begin{equation} %开始数学环境 \left( %左括号 \begin{array}{ccc} %该矩阵一共3列,每一列都居中放置 x_1(t_1) & ... & x_1(t_d)\\ %第一行元素 ... & ... & ...\\ %第二行元素 x_n(t_1) & ... & x_n(t_d)\\ %第二行元素 \end{array} \right) %右括号 \end{equation} x1(t1)...xn(t1).........x1(td)...xn(td)

4)剩余训练数据

训练数据中除去记忆矩阵的剩余部分,将会组成剩余训练数据L

5)当前系统估计矩阵

Xobs是当前系统观测矩阵,如果想要求当前系统的估计矩阵,那么就需要使用观测矩阵乘以某个大小相同的权重矩阵,即:
X e s t = D ⋅ W X_{est}=D·W Xest=DW
权值矩阵W为表征状态估计和过程记忆矩阵间相似性测度的大小,为了让Xobs和Xest的残差值最小化,进行求解

6)求解过程

目标函数: m i n ϵ 2 = m i n [ ( X o b s − D ⋅ W ) T ⋅ ( X o b s − D ⋅ W ) ] 目标函数:min\epsilon^2=min[(X_{obs}-D·W)^T·(X_{obs}-D·W)] 目标函数:minϵ2=min[(XobsDW)T(XobsDW)]
最小二乘解: W = ( D T ⋅ D ) − 1 ⋅ ( D T ⋅ D o b s ) 最小二乘解:W=(D^T·D)^{-1}·(D^T·D_{obs}) 最小二乘解:W=DTD1DTDobs
大多数系统的状态数据间都会存在一定的相关性,数据之间的相关性会导致矩阵不可逆,限制了权值的求取。NSET方法利用基于相似性原理的相似性运算符代替点积,通过计算数据状态间的相似程度来表征其权值,解决数据相关所造成的矩阵不可逆。
相似性运算符号: ⊗ 相似性运算符号:\otimes 相似性运算符号:
W = ( D T ⊗ D ) − 1 ⋅ ( D T ⊗ D o b s ) W=(D^T\otimes D)^{-1}·(D^T\otimes D_{obs}) W=(DTD)1(DTDobs)
最终,系统当前的状态估计矩阵与观测矩阵关系如下结果:
X e s t = D ⋅ ( D T ⊗ D ) − 1 ⋅ ( D T ⊗ D o b s ) X_{est}=D·(D^T \otimes D)^{-1}·(D^T\otimes D_{obs}) Xest=D(DTD)1(DTDobs)

http://www.lryc.cn/news/476229.html

相关文章:

  • NC6 系统配置的消息渠道配置配置涉及相关的表,用户使用admin登录
  • PXC数据库性能测试对比
  • 使用AutoMySQLBackup 数据库自动备份
  • NVR批量管理软件/平台EasyNVR多个NVR同时管理支持对接阿里云、腾讯云、天翼云、亚马逊S3云存储
  • 13.React useTimeout
  • Android待机问题与内存泄露日志定位及bugreport获取分析
  • 访问控制技术原理与应用
  • 详解Rust标准库:Vec向量
  • 网络原理(初一,TCP/IP五层(或四层)模型面试问题)
  • Unity引擎材质球残留贴图引用的处理
  • Flutter鸿蒙next中封装一个列表组件
  • 层次与网络的视觉对话:树图与力引导布局的双剑合璧
  • python将数据集中所有文件名升序制作txt文件(医学影像)
  • 【The Art of Unit Testing 3_自学笔记06】3.4 + 3.5 单元测试核心技能之:函数式注入与模块化注入的解决方案简介
  • 【VSCode】配置
  • Linux 常用命令整理大全及命令使用心得
  • 计算器的实现
  • 这个工具帮你快速实现数据集成和同步
  • 论文阅读:Computational Long Exposure Mobile Photography (一)
  • 项目解决方案:多地连锁药店高清视频监控系统建设解决方案(设计方案)
  • utf-8、pbkdf2_sha
  • Java之包,抽象类,接口
  • HarmonyOS鸿蒙开发入门,常用ArkUI组件学习(二)
  • 斩!JavaScript语法进阶
  • UFO:Windows操作系统的具象智能代理
  • win10/11无休眠设置和断电后电池模式自动休眠而不是睡眠-用以省电
  • 【动态规划之斐波那契数列模型】——累加递推型动态规划
  • 5g通信系统用到的crc码
  • Ubuntu-22.04 虚拟机安装
  • Windows、Linux系统上进行CPU和内存压力测试