当前位置: 首页 > news >正文

数据结构之线段树

线段树

线段树(Segment Tree)是一种高效的数据结构,广泛应用于计算机科学和算法中,特别是在处理区间查询和更新问题时表现出色。以下是对线段树的详细解释:

一、基本概念

线段树是一种二叉搜索树,是算法竞赛中常用的用来维护 区间信息 的数据结构。线段树可以在 O(logn) 的时间复杂度内实现单点修改、区间修改、区间查询(区间求和,求区间最大值,求区间最小值)等操作。

原理其实是分治思想。它将整个区间划分成一些单元区间,具有对数级别的高度,从而保证了高效的查询和更新操作。

二、基本结构

  • 根结点:代表整个区间。
  • 内部结点:每个内部结点都代表一个区间,并将其划分为左右两个子区间,分别由左孩子和右孩子表示。
  • 叶结点:代表单元区间,每个叶结点对应原始数据中的一个元素。

对于线段树中的每一个非叶子节点[a,b],它的左儿子表示的区间为[a,(a+b)/2],右儿子表示的区间为[(a+b)/2+1,b]。

三、示例应用

假设有一个长度为N的数组a,需要频繁地查询任意区间[l,r]的最小值和以及更新数组中的某个元素。使用线段树可以高效地解决这些问题。以下是一个简单的线段树实现示例(以Python代码表示):

class SegmentTree:  def __init__(self, nums):  self.nums = nums  self.n = len(nums)  # 初始化线段树,大小为4倍的原数组长度,因为线段树是完全二叉树  self.tree = [float('inf')] * (4 * self.n)  self.build_tree(0, 0, self.n - 1)  def build_tree(self, tree_index, l, r):  # 如果到达了叶节点  if l == r:  self.tree[tree_index] = self.nums[l]  return  # 计算左右子节点的索引  left_child = 2 * tree_index + 1  right_child = 2 * tree_index + 2  # 递归构建左右子树  mid = (l + r) // 2  self.build_tree(left_child, l, mid)  self.build_tree(right_child, mid + 1, r)  # 当前节点的值是其左右子节点值的最小值  self.tree[tree_index] = min(self.tree[left_child], self.tree[right_child])  def query(self, l, r):  return self.query_tree(0, 0, self.n - 1, l, r)  def query_tree(self, tree_index, seg_l, seg_r, query_l, query_r):  # 如果查询区间完全包含了当前线段树节点代表的区间  if query_l <= seg_l and seg_r <= query_r:  return self.tree[tree_index]  # 如果查询区间与当前线段树节点代表的区间没有交集  if query_l > seg_r or query_r < seg_l:  return float('inf')  # 计算左右子节点的索引  left_child = 2 * tree_index + 1  right_child = 2 * tree_index + 2  # 递归查询左右子树,并取最小值  mid = (seg_l + seg_r) // 2  left_min = self.query_tree(left_child, seg_l, mid, query_l, query_r)  right_min = self.query_tree(right_child, mid + 1, seg_r, query_l, query_r)  return min(left_min, right_min)  def update(self, index, value):  self.update_tree(0, 0, self.n - 1, index, value)  def update_tree(self, tree_index, seg_l, seg_r, index, value):  # 如果到达了叶节点  if seg_l == seg_r:  self.nums[index] = value  self.tree[tree_index] = value  return  # 计算左右子节点的索引  left_child = 2 * tree_index + 1  right_child = 2 * tree_index + 2  # 递归更新左右子树  mid = (seg_l + seg_r) // 2  if index <= mid:  self.update_tree(left_child, seg_l, mid, index, value)  else:  self.update_tree(right_child, mid + 1, seg_r, index, value)  # 当前节点的值是其左右子节点值的最小值  self.tree[tree_index] = min(self.tree[left_child], self.tree[right_child])  # 示例用法  
nums = [1, 3, 2, 7, 9, 11]  
seg_tree = SegmentTree(nums)  # 查询区间[1, 3]的最小值  
print(seg_tree.query(1, 3))  # 输出: 2  # 更新索引2处的值为0  
seg_tree.update(2, 0)  # 再次查询区间[1, 3]的最小值  
print(seg_tree.query(1, 3))  # 输出: 0
http://www.lryc.cn/news/476007.html

相关文章:

  • vue 快速入门
  • iframe视频宽度高度自适应( pc+移动都可以用,jq写法 )
  • Observability:OpenTelemetry Elastic 分发简介
  • golang的RSA加密解密
  • 深度学习-梯度消失/爆炸产生的原因、解决方法
  • MVC(Model-View-Controller)模式概述
  • 数据结构 —— 红黑树
  • 《功能高分子学报》
  • Linux特种文件系统--tmpfs文件系统
  • 《基于STMF103的FreeRTOS内核移植》
  • 一七二、Vue3性能优化方式
  • 软件测试--BUG篇
  • Scikit-learn和Keras简介
  • python在word的页脚插入页码
  • Java面试题十四
  • yarn : 无法加载文件,未对文件 进行数字签名。无法在当前系统上运行该脚本。
  • Hadoop——HDFS
  • 计算机的一些基础知识
  • 学习RocketMQ(记录了个人艰难学习RocketMQ的笔记)
  • 【设计模式】策略模式定义及其实现代码示例
  • list与iterator的之间的区别,如何用斐波那契数列探索yield
  • 抖音店铺数据也就是抖店,如何使用小店数据集来挖掘价值?
  • KubeVirt 安装和配置 Windows虚拟机
  • CM API方式设置YARN队列资源
  • Mysql常用语法一篇文章速成
  • Intel nuc x15 重装系统步骤和注意事项(LAPKC71F、LAPKC71E、LAPKC51E)
  • Linux之实战命令59:iwlist应用实例(九十三)
  • 数据库_SQLite3
  • .Net Framework里演示怎么样使用StringBuilder、Math.Min和String.Format
  • Oracle创建存储过程,创建定时任务