当前位置: 首页 > news >正文

简单题:计算从位置 x 到 y 的最少步数| 豆包MarsCode AI刷题

题目解析:计算从位置 x 到 y 的最少步数

题目描述

题目要求从整数位置 x 移动到整数位置 y,每一步可以将当前位置增加或减少,且每步的增加或减少的值必须是连续的整数。首末两步的步长必须是 1。要求求出从 x 到 y 的最少步数。

思路分析

首先,这个问题可以看作是在一个数轴上从 x 点移动到 y 点的问题。每一步的移动范围是上一步的 -1,+0 或 +1,且首尾两步的步长必须是 1。

我们可以从以下几个方面进行分析:

  1. 绝对距离与步数关系

    • 绝对距离 d = |y - x| 决定了至少需要多少步。
    • 由于每一步最多可以增加或减少前一步的步长+1,因此可以通过不断增加步长来覆盖整个距离。
  2. 步长变化

    • 步长从 1 开始,每一步的步长变化为 +1、-1 或 0。
    • 由于首尾步长必须是 1,我们可以理解为在中间的步数中,我们可以选择增加步长来覆盖更多距离,也可以选择减小步长来灵活调整位置。
  3. 贪心策略

    • 在每一步中,为了尽快覆盖剩余的距离,我们希望尽量使用较大的步长。
    • 但在某些情况下,为了最终能够精确到达 y 点,我们可能需要减小步长来调整位置。
代码详解

代码中使用了一个 sum 方法来计算从 1 到某个数的和,这是为了确定在给定的步长下,能够覆盖的最大距离。

public class Main {// 计算从 1 到 x 的和public static int sum(int x) {if (x <= 0) {return 0;}int res = 0;for (int i = 1; i <= x; i++) {res += i;}return res;}// 计算从 x 到 y 的最小步数public static int solution(int x, int y) {// 确保 x < y,便于处理if (x > y) {int temp = x;x = y;y = temp;}int l = 0, r = y - x;int step = 0;int stepDistance = 0;while (l < r) {if (step == 0) {stepDistance = 1;step = 1;l += stepDistance;continue;}int step1 = stepDistance + 1;int step2 = stepDistance;int step3 = stepDistance - 1;// 尝试使用最大步长 step1if (l + step1 < r) {int m = l + step1;int s = sum(step1 - 1);if ((r - m) >= s) {l = m;step++;stepDistance = step1;continue;}}// 尝试使用当前步长 step2if (l + step2 <= r) {int m = l + step2;int s = sum(step2 - 1);if ((r - m) >= s) {l = m;step++;stepDistance = step2;continue;}}// 尝试使用减小步长 step3if (l + step3 <= r) {int m = l + step3;int s = sum(step3 - 1);if ((r - m) >= s) {l = m;step++;stepDistance = step3;continue;}}}return step;}public static void main(String[] args) {// 测试用例System.out.println(solution(6, 7) == 1);      // 输出 trueSystem.out.println(solution(12, 6) == 4);     // 输出 trueSystem.out.println(solution(34, 45) == 6);    // 输出 trueSystem.out.println(solution(50, 30) == 8);     // 输出 true}
}
个人思考与分析

这个问题实际上是一个动态规划问题的简化版,由于步长的变化特性,使得我们可以使用贪心策略来求解。

  1. 贪心策略的优势

    • 在每一步中,选择最大可能的步长,可以尽快减少剩余的距离。
    • 通过调整步长来适应最终位置的需求,确保最终能够精确到达 y 点。
  2. 代码优化

    • 在计算 sum 方法时,可以使用数学公式 n * (n + 1) / 2 来优化,减少循环计算。
    • 可以进一步简化代码,通过一些数学推导减少不必要的计算。
  3. 复杂度分析

    • 这个问题的时间复杂度主要取决于 while 循环的次数,即步数的多少。
    • 空间复杂度较低,主要是一些变量的存储。

通过这道题目,我们可以更深入地理解贪心算法在实际问题中的应用,以及如何通过数学推导和算法优化来解决问题。

http://www.lryc.cn/news/475293.html

相关文章:

  • HTML 基础标签——表单标签<form>
  • LeetCode 每日一题 2024/10/28-2024/11/3
  • 基于Spring Boot和Vue的电子商城系统功能设计
  • 成都睿明智科技有限公司正规吗靠谱吗?
  • 【天线&化学】航拍图屋顶异常检测系统源码&数据集全套:改进yolo11-ContextGuided
  • 【回忆】JavaScript 中的 Map 有哪些方法
  • Chrome与夸克的安全性对比
  • 使用Python可视化支持向量机(SVM)
  • C++泛型编程
  • 【论文分享】利用大量街景图片研究街道空间质量与建筑环境属性之间的关联
  • 【Linux第七课--基础IO】内存级文件、重定向、缓冲区、文件系统、动态库静态库
  • 对比C/C++语言,Rust语言有什么优势?
  • Rust语言有哪些数据类型?
  • 【论文笔记】Attention Prompting on Image for Large Vision-Language Models
  • VScode设置系统界面字体
  • Java中常见的异常类型
  • Java学习Day58:相声二人组!(项目统计数据Excel图表导出)
  • springboot 自动装配和bean注入原理及实现
  • 解决Redis缓存穿透(缓存空对象、布隆过滤器)
  • 初探Flink的序列化
  • QT 机器视觉 (3. 虚拟相机SDK、测试工具)
  • 1分钟解决Excel打开CSV文件出现乱码问题
  • 基于SpringBoot+Vue的仓库管理系统【前后端分离】
  • vue和django接口联调
  • 2-141 怎么实现ROI-CS压缩感知核磁成像
  • 开源库 FloatingActionButton
  • 技术选型不当对项目的影响与补救措施
  • Spring的核心类: BeanFactory, ApplicationContext 笔记241103
  • UE5移动端主要对象生命周期及监听
  • LLM | 论文精读 | CVPR | SelTDA:将大型视觉语言模型应用于数据匮乏的视觉问答任务