当前位置: 首页 > news >正文

【PTA】4-2 树的同构【数据结构】

给定两棵树 T1​ 和 T2​。如果 T1​ 可以通过若干次左右孩子互换就变成 T2​,则我们称两棵树是“同构”的。例如图1给出的两棵树就是同构的,因为我们把其中一棵树的结点A、B、G的左右孩子互换后,就得到另外一棵树。而图2就不是同构的。

bd291b3b99c44125838df959dc7f004f.png

图一 

7ccf1d7fa8394760ba22db7f714d90d9.png

图二 

现给定两棵树,请你判断它们是否是同构的。

输入格式:

输入给出2棵二叉树的信息。对于每棵树,首先在一行中给出一个非负整数 n (≤10),即该树的结点数(此时假设结点从 0 到 n−1 编号);随后 n 行,第 i 行对应编号第 i 个结点,给出该结点中存储的 1 个英文大写字母、其左孩子结点的编号、右孩子结点的编号。如果孩子结点为空,则在相应位置上给出 “-”。给出的数据间用一个空格分隔。注意:题目保证每个结点中存储的字母是不同的。

输出格式:

如果两棵树是同构的,输出“Yes”,否则输出“No”。

输入样例1(对应图1):

8
A 1 2
B 3 4
C 5 -
D - -
E 6 -
G 7 -
F - -
H - -
8
G - 4
B 7 6
F - -
A 5 1
H - -
C 0 -
D - -
E 2 -

输出样例1:

Yes

输入样例2(对应图2):

8
B 5 7
F - -
A 0 3
C 6 -
H - -
D - -
G 4 -
E 1 -
8
D 6 -
B 5 -
E - -
H - -
C 0 2
G - 3
F - -
A 1 4

输出样例2:

No
  • 对于每棵树,其节点的数量、层次结构和连接关系必须完全一致。
  • 如果树上的节点带有特定的标签或值,则这些标签也必须一一对应相等。

 既然判断树的同构,那我们就应该先构建一个树形结构:

typedef struct tree
{char data;       // 节点数据int left;        // 左子节点索引int right;       // 右子节点索引
} tree;
  • 声明了两个全局数组T1T2,以及一个检查数组check,用于存储两棵树的节点信息和标记哪些节点已经被访问过。
// 全局数组用于存放两个树的节点信息
tree T1[MAXTREE], T2[MAXTREE];
// 检查数组,用于标记已访问过的节点
int check[MAXTREE];
  1. 构建树的函数 (buildTree()):

    • 接受一个指向tree结构体数组的指针参数t,用于接收用户输入并构建树。
    • 用户需要输入节点总数,然后依次输入每个节点的数据及其左右孩子的索引。
    • 函数通过遍历输入的节点信息,填充tree结构体数组,并找到根节点的索引后返回。
  2. 判断两棵树是否同构的函数 (Isomorphism()):

    • 这是一个递归函数,接受两个参数,分别为两棵树的根节点索引。
    • 通过对比两棵树的各个节点数据和子节点结构,确定它们是否同构。
// 构建树的函数
int buildTree(tree* t);
// 判断两棵树是否同构的递归函数
int Isomorphism(int root1, int root2);

 主函数调用buildTree函数构建树形结构

int main()
{int r1, r2;// 分别构建两棵树r1 = buildTree(T1);r2 = buildTree(T2);// 如果两棵树同构,打印"Yes"if (Isomorphism(r1, r2)) {printf("Yes\n");}// 否则打印"No"else{printf("No\n");}return 0;
}

构建树的函数 

int buildTree(tree* t)
{int root = null, i;int n;char cleft, cright;// 输入节点数量scanf("%d", &n);// 如果节点数量大于零if (n > 0){// 初始化检查数组memset(check, 0, sizeof(check));// 遍历所有节点,输入节点数据及左右子节点索引for (i = 0; i < n; i++){// 忽略换行符getchar();// 输入当前节点的数据及左右子节点索引scanf("%c %c %c", &t[i].data, &cleft, &cright);// 处理左子节点if (cleft!= '-') {t[i].left = cleft - '0';   // 将字符形式的索引转为整数check[t[i].left] = 1;   // 标记此子节点已被访问} else t[i].left = null;       // 空节点// 处理右子节点if (cright!= '-') {t[i].right = cright - '0';  // 将字符形式的索引转为整数check[t[i].right] = 1;  // 标记此子节点已被访问} else {t[i].right = null;      // 空节点}}// 找到根节点for (i = 0; i < n; i++){//没有被访问过if (!check[i]) {break;}}// 返回根节点索引root = i;}// 返回根节点索引return root;
}

 memset(check, 0, sizeof(check));  :
这里使用memset函数清空check数组,准备记录哪些节点已经被访问过。 

下面是判断两棵树是否同构的算法:

int Isomorphism(int root1, int root2)
{// 如果两个根节点都为空,返回真if (root1 == null && root2 == null){return 1;}// 如果两个根节点不都为空else{// 如果只有一个根节点为空,返回假if (root1 == null && root2!= null || root1!= null && root2 == null){return 0;}else{// 如果两个根节点都不为空且数据不同,返回假if (T1[root1].data!= T2[root2].data){return 0;}// 如果两个根节点数据相同,继续比较子节点else{// 如果两个根节点都没有左子节点,只比较右子节点if (T1[root1].left == null && T2[root2].left == null){return Isomorphism(T1[root1].right, T2[root2].right);}// 如果两个根节点都有左子节点且数据相同,分别比较左右子节点else{if (T1[root1].left!= null && T2[root2].left!= null && T1[T1[root1].left].data == T2[T2[root2].left].data){return Isomorphism(T1[root1].left, T2[root2].left) && Isomorphism(T1[root1].right, T2[root2].right);}// 如果两个根节点都有左子节点但数据不同,交换左右子节点进行比较else{return Isomorphism(T1[root1].right, T2[root2].left) && Isomorphism(T1[root1].left, T2[root2].right);}}}}}
}

完整代码附上: 

#include <stdio.h>
#include <string.h>// 定义最大树的大小
#define MAXTREE 10
// 定义空节点的标识
#define null -1// 树结构体
typedef struct tree
{char data;       // 节点数据int left;        // 左子节点索引int right;       // 右子节点索引
} tree;// 全局数组用于存放两个树的节点信息
tree T1[MAXTREE], T2[MAXTREE];
// 检查数组,用于标记已访问过的节点
int check[MAXTREE];// 构建树的函数
int buildTree(tree* t);
// 判断两棵树是否同构的递归函数
int Isomorphism(int root1, int root2);int main()
{int r1, r2;// 分别构建两棵树r1 = buildTree(T1);r2 = buildTree(T2);// 如果两棵树同构,打印"Yes"if (Isomorphism(r1, r2)) {printf("Yes\n");}// 否则打印"No"else{printf("No\n");}return 0;
}// 构建树的函数实现
int buildTree(tree* t)
{int root = null, i;int n;char cleft, cright;// 输入节点数量scanf("%d", &n);// 如果节点数量大于零if (n > 0){// 初始化检查数组memset(check, 0, sizeof(check));// 遍历所有节点,输入节点数据及左右子节点索引for (i = 0; i < n; i++){// 忽略换行符getchar();// 输入当前节点的数据及左右子节点索引scanf("%c %c %c", &t[i].data, &cleft, &cright);// 处理左子节点if (cleft!= '-') {t[i].left = cleft - '0';   // 将字符形式的索引转为整数check[t[i].left] = 1;   // 标记此子节点已被访问} else t[i].left = null;       // 空节点// 处理右子节点if (cright!= '-') {t[i].right = cright - '0';  // 将字符形式的索引转为整数check[t[i].right] = 1;  // 标记此子节点已被访问} else {t[i].right = null;      // 空节点}}// 找到根节点for (i = 0; i < n; i++){//没有被访问过if (!check[i]) {break;}}// 返回根节点索引root = i;}// 返回根节点索引return root;
}// 判断两棵树是否同构的递归函数实现
int Isomorphism(int root1, int root2)
{// 如果两个根节点都为空,返回真if (root1 == null && root2 == null){return 1;}// 如果两个根节点不都为空else{// 如果只有一个根节点为空,返回假if (root1 == null && root2!= null || root1!= null && root2 == null){return 0;}else{// 如果两个根节点都不为空且数据不同,返回假if (T1[root1].data!= T2[root2].data){return 0;}// 如果两个根节点数据相同,继续比较子节点else{// 如果两个根节点都没有左子节点,只比较右子节点if (T1[root1].left == null && T2[root2].left == null){return Isomorphism(T1[root1].right, T2[root2].right);}// 如果两个根节点都有左子节点且数据相同,分别比较左右子节点else{if (T1[root1].left!= null && T2[root2].left!= null && T1[T1[root1].left].data == T2[T2[root2].left].data){return Isomorphism(T1[root1].left, T2[root2].left) && Isomorphism(T1[root1].right, T2[root2].right);}// 如果两个根节点都有左子节点但数据不同,交换左右子节点进行比较else{return Isomorphism(T1[root1].right, T2[root2].left) && Isomorphism(T1[root1].left, T2[root2].right);}}}}}
}

 

 

 

 

 

http://www.lryc.cn/news/475049.html

相关文章:

  • Node.js——fs模块-同步与异步
  • Java基于微信小程序的私家车位共享系统(附源码,文档)
  • vscode 创建 vue 项目时,配置文件为什么收缩到一起展示了?
  • PySpark任务提交
  • 【果蔬购物商城管理与推荐系统】Python+Django网页界面+协同过滤推荐算法+管理系统网站
  • 【大模型】海外生成式AI赛道的关键玩家:OpenAI、Anthropic之外还有谁?
  • kubevirt cloud-init配置
  • Oracle 大表添加索引的最佳方式
  • 速度了解云原生后端!!!
  • 云计算Openstack 虚拟机调度策略
  • 在 macOS 上添加 hosts 文件解析的步骤
  • RHCE【防火墙】
  • 基于springboot的招聘系统的设计与实现
  • 长度最小的子数组(滑动窗口)
  • 构建灵活、高效的HTTP/1.1应用:探索h11库
  • 大学英语救星!GPT助你完美解答完型填空和阅读理解
  • 【linux】centos编译安装openssl1.1.1
  • SpringBoot环境下的学生请假管理平台开发
  • 基于Transformer的路径规划 - 第五篇 GPT生成策略_解码方法优化
  • 项目模块十三:Util模块
  • 10款舞台剧免费音频剪辑软件分享,你用过哪款?
  • Redis常见面试题:ZSet底层数据结构,SDS、压缩列表ZipList、跳表SkipList
  • 496.下一个更大元素Ⅰ
  • C++类和对象上
  • 《图像边缘检测算法综述》
  • Git 使用指南:从基础到实战
  • 新生代对象垃圾回收如何避免全堆扫描
  • [论文阅读] | 智能体长期记忆
  • Vue2.0 通过vue-pdf-signature@4.2.7和pdfjs-dist@2.5.207实现PDF预览
  • gradle的安装及其配置