当前位置: 首页 > news >正文

【JavaGuide】十大经典排序算法总结

冒泡排序

算法步骤

不断的两两比较,这样当前最大的元素总是会排在最后面。所以称为冒泡。

图解算法

在这里插入图片描述

代码实现


public static int[] bubbleSort(int[] arr) {// i是排好了几个数for (int i = 1; i < arr.length; i++) {// flag标记当前循环是否调整了顺序,如果没有调整,说明排序完成boolean flag = true;// arr.length - i控制数组尾巴for (int j = 0; j < arr.length - i; j++) {if (arr[j] > arr[j + 1]) {int tmp = arr[j];arr[j] = arr[j + 1];arr[j + 1] = tmp;flag = false;}}if (flag) {break;}}return arr;
}

算法分析

稳定性:稳定
时间复杂度:最佳: O ( n ) O(n) O(n) ,最差: O ( n 2 ) O(n^2) O(n2), 平均: O ( n 2 ) O(n^2) O(n2)
空间复杂度: O ( 1 ) O(1) O(1)
排序方式:内部排序

选择排序

算法步骤

不断地选择最小/最大的元素和当前未排序序列的头进行交换

图解算法

在这里插入图片描述

代码实现

public static int[] selectionSort(int[] arr) {// 找到的元素放到第i个,未排序序列头for (int i = 0; i < arr.length - 1; i++) {// minIndex记录当前未排序的最小元素的索引int minIndex = i;for (int j = i + 1; j < arr.length; j++) {if (arr[j] < arr[minIndex]) {minIndex = j;}}// 交换if (minIndex != i) {int tmp = arr[i];arr[i] = arr[minIndex];arr[minIndex] = tmp;}}return arr;
}

算法分析

稳定性:不稳定
时间复杂度:最佳: O ( n 2 ) O(n^2) O(n2) ,最差: O ( n 2 ) O(n^2) O(n2), 平均: O ( n 2 ) O(n^2) O(n2)
空间复杂度: O ( 1 ) O(1) O(1)
排序方式:内部排序

插入排序

算法步骤

就是扑克牌理牌。从前往后读取未排列序列的元素,拿到新元素后从后往前遍历已排序序列找到合适的位置插入。

图解算法

在这里插入图片描述

代码实现

public static int[] insertionSort(int[] arr) {for (int i = 1; i < arr.length; i++) {// preindex记录已排序序列的尾int preIndex = i - 1;// current是当前要插入的元素int current = arr[i];while (preIndex >= 0 && current < arr[preIndex]) {// 往后移arr[preIndex + 1] = arr[preIndex];preIndex -= 1;}arr[preIndex + 1] = current;}return arr;
}

算法分析

稳定性:稳定
时间复杂度:最佳: O ( n ) O(n) O(n) ,最差: O ( n 2 ) O(n^2) O(n2), 平均: O ( n 2 ) O(n^2) O(n2)
空间复杂度: O ( 1 ) O(1) O(1)
排序方式:内部排序

希尔排序

算法步骤

不断的按照增量来分出子数组的数量,子数组内部进行插入排序,然后缩小增量,减少分子数组的数量,然后接着插入排序,直到增量为1之后再进行一次插入排序即可。

算法图解

在这里插入图片描述

代码实现

public static int[] shellSort(int[] arr) {int n = arr.length;int gap = n / 2;while (gap > 0) {for (int i = gap; i < n; i++) {int current = arr[i];int preIndex = i - gap;// 插入排序while (preIndex >= 0 && arr[preIndex] > current) {arr[preIndex + gap] = arr[preIndex];preIndex -= gap;}arr[preIndex + gap] = current;}gap /= 2;}return arr;
}

算法分析

稳定性:不稳定
时间复杂度:最佳: O ( n l o g n ) O(nlogn) O(nlogn), 最差: O ( n 2 ) O(n^2) O(n2) 平均: O ( n l o g n ) O(nlogn) O(nlogn)
空间复杂度: O ( 1 ) O(1) O(1)
排序方式:内部排序

归并排序

算法步骤

将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。
就是让子数列内部有序,然后让两个子序列段间有序,不断重复直到整个序列有序。

图解算法

在这里插入图片描述

代码实现

public static int[] mergeSort(int[] arr) {if (arr.length <= 1) {return arr;}int middle = arr.length / 2;int[] arr_1 = Arrays.copyOfRange(arr, 0, middle);int[] arr_2 = Arrays.copyOfRange(arr, middle, arr.length);return merge(mergeSort(arr_1), mergeSort(arr_2));
}public static int[] merge(int[] arr_1, int[] arr_2) {int[] sorted_arr = new int[arr_1.length + arr_2.length];int idx = 0, idx_1 = 0, idx_2 = 0;while (idx_1 < arr_1.length && idx_2 < arr_2.length) {if (arr_1[idx_1] < arr_2[idx_2]) {sorted_arr[idx] = arr_1[idx_1];idx_1 += 1;} else {sorted_arr[idx] = arr_2[idx_2];idx_2 += 1;}idx += 1;}if (idx_1 < arr_1.length) {while (idx_1 < arr_1.length) {sorted_arr[idx] = arr_1[idx_1];idx_1 += 1;idx += 1;}} else {while (idx_2 < arr_2.length) {sorted_arr[idx] = arr_2[idx_2];idx_2 += 1;idx += 1;}}return sorted_arr;
}

算法分析

稳定性:稳定
时间复杂度:最佳: O ( n l o g n ) O(nlogn) O(nlogn), 最差: O ( n l o g n ) O(nlogn) O(nlogn), 平均: O ( n l o g n ) O(nlogn) O(nlogn)
空间复杂度: O ( n ) O(n) O(n)
排序方式:外部排序

快速排序

算法步骤

从序列中随机挑出一个元素,做为 基准;通过一趟排序将待排序列分隔成独立的两部分,比基准小的在左边,比基准大的在右边,则可分别对这两部分子序列继续进行排序,以达到整个序列有序。

图解算法

在这里插入图片描述

代码实现

public static int partition(int[] array, int low, int high) {int pivot = array[high];int pointer = low;for (int i = low; i < high; i++) {if (array[i] <= pivot) {int temp = array[i];array[i] = array[pointer];array[pointer] = temp;pointer++;}System.out.println(Arrays.toString(array));}int temp = array[pointer];array[pointer] = array[high];array[high] = temp;return pointer;
}
public static void quickSort(int[] array, int low, int high) {if (low < high) {int position = partition(array, low, high);quickSort(array, low, position - 1);quickSort(array, position + 1, high);}
}

算法分析

稳定性:不稳定
时间复杂度:最佳: O ( n l o g n ) O(nlogn) O(nlogn), 最差: O ( n 2 ) O(n^2) O(n2),平均: O ( n l o g n ) O(nlogn) O(nlogn)
空间复杂度: O ( l o g n ) O(logn) O(logn)
排序方式:内部排序

堆排序

算法步骤

堆排序是指利用堆这种数据结构所设计的一种排序算法。堆是一个近似完全二叉树的结构,并同时满足堆的性质:即子结点的值总是小于(或者大于)它的父节点。

图解算法

在这里插入图片描述

算法分析

稳定性:不稳定
时间复杂度:最佳: O ( n l o g n ) O(nlogn) O(nlogn), 最差: O ( n l o g n ) O(nlogn) O(nlogn), 平均: O ( n l o g n ) O(nlogn) O(nlogn)
空间复杂度: O ( 1 ) O(1) O(1)
排序方式:内部排序

计数排序

算法步骤

http://www.lryc.cn/news/474430.html

相关文章:

  • 程序中怎样用最简单方法实现写excel文档
  • 《机器学习与人类学习:比较、融合与未来展望》
  • Mysql 8.4.3LTS 的离线部署
  • h5项目打包上线报错404文件找不到
  • mysql上课总结(5)(MySQL的完整性约束(详细介绍))
  • 复原IP地址
  • Effective C++ 学习笔记二
  • 以「JIMUMETA元宇宙体验馆」为例,探讨有哪些元宇宙场景?
  • RHCE的练习(8)
  • yocto是如何收集recipes,如何加入现有的bb文件
  • [运维] 服务器本地网络可用性检查脚本
  • MYSQL-显示信息关于服务器插件语法(二十五)
  • 【线下培训】龙信受邀参加开封市公安局举办的电子数据取证培训班
  • 软件测试工程师面试整理 —— 编程与自动化!
  • 【鸿蒙新闻】10月29日警用鸿蒙开发者大会在北京胜利召开,开启智慧应用新时代!
  • java.io.IOException: Too many open files
  • ElementUI el-form表单多层数组的校验
  • 常见的向量范数、矩阵范数和对偶范数-对偶范数详细证明过程
  • Android 滴滴面经
  • angular登录按钮输入框监听
  • 硅谷甄选(10)用户管理
  • Unity XR Interaction Toolkit 开发教程(2):导入 SDK【3.0 以上版本】
  • element-plus校验单个form对象合法性
  • Linux常见命令合集
  • __init__.py __all__和 __name__的作用及其用法
  • js操作数组的方法 / js操作字符串的方法
  • Docker 部署RocketMQ
  • Linux(Cent OS)环境离线安装mkfontscale mkfontdir命令 解决java项目在linux系统下无法获取中文字体问题
  • 计算堆栈中的剩余数字
  • 笔记:mysql升级 5.6至5.7