集合论(ZFC)之 选择公理(Axiom of Choice)注解
直观感受(Intuition)
集合论(ZFC)中的 "C" 指的是选择公理(Axiom of Choice)中的"choice"。简单来说,对于任一非空集合 S,那么存在一个函数 f,选择出其中的元素 s ∈ S,即 s = f(S) ∈ S。
形式化(Formalization)
正式定义有,对于任一索引非空集合族(indexed family of non-empty set),记,{Sᵢ: i ∈ I},其中,i for index。那么,存在一个索引集合,记,{xᵢ: i ∈ I},使得 ∀i∈I. (xᵢ ∈ Sᵢ)。
也就是说,存在一个选择函数 choice,使得,
∀i∈I. (choice( Sᵢ ∈ {Sᵢ: i ∈ I} ) ∈ Sᵢ )
其中,choice: {Sᵢ: i ∈ I} → Sᵢ
xᵢ = choice(Sᵢ)
注解(Annotation)
初步看来,其实挺合理的,就是,一个非空的集合,意味着,该集合肯定包含了某些元素,又,既然包含了一些元素,那么,肯定能选取出一个元素来。
可是,这里忽略了一点,就是,存在(existence)与能选出(choice)是两个区别的概念。而选择公理(Axiom of Choice)则规定了,只要是存在的(non-empty),那么,就能选出(choice),也就是,将这两概念等价起来了。
这样,通过选择公理(AC),可以证明一些不可构建(non-constructable)的存在(existence)。例如,最为形象的是,Banach–Tarski 悖论。由此,也引申出不可测量集合(non-measurable sets)的概念。
另外,选择公理(AC)隐含了(implies)排中律(Law of Excluded Middle),即,
AC → P∨¬P ≡ True
排中律,说的是,对于任一命题P,命题P为真,或∨,其反命题¬P为真。这里就产生了个有意思的逻辑。
对于命题连接符,或∨,来说,其输出的值,由其输入决定,即,对于A∨B来说,A、B中,有一个为真(True),那么,或∨的输出为真(True)。这里有明确的输入,产生明确的输出。即,需要证明A是真,或者,B是真,才能得出, A∨B 是真。
而对于排中律来说,不需要证明,P、¬P哪个是真,就能得出, P∨¬P 是真的。反过来说,当有 P∨¬P 为真,那么,通过 选择公理(AC),就能选择出其中为真的命题,是P,或则是¬P。即,
choice(P∨¬P) ∈ P∨¬P。
这里,合理解析为,如果P是真,那么¬P肯定不为真;反之亦然。也就是说,对于命题P来说,不管是否能证明,命题P的真值只有真(True)与假(False)。就相当于,只要是非空集合(P∨¬P),那肯定存在一个元素,无论是 P 或 ¬P ,那么,该元素就是 choice(P∨¬P) ,使得(P∨¬P)非空,即 (P∨¬P)恒为真。即,通过,choice(P∨¬P) ,证明,P∨¬P ≡ True 。