当前位置: 首页 > news >正文

三、大模型(LLMs)微调面

本文精心汇总了多家顶尖互联网公司在大模型基础知识考核中的核心考点,并针对这些考点提供了详尽的解答。并提供电子版本,见于文末百度云盘链接中,供读者查阅。

一、大模型微调


• 1 如果想要在某个模型基础上做全参数微调,究竟需要多少显存?
• 2 为什么SFT之后感觉LLM傻了?
• 3 SFT 指令微调数据 如何构建?
        • 3.1 提升sft的prompt的代表性有什么好的方法?
        • 3.2 提升sft的prompt的数据量有什么好的方法?
• 4 领域模型Continue PreTrain 数据选取?
• 5 领域数据训练后,通用能力往往会有所下降,如何缓解模型遗忘通用能力?
• 6 领域模型Continue PreTrain ,如何 让模型在预训练过程中就学习到更多的知识?
• 7 进行SFT操作的时候,基座模型选用Chat还是Base?
• 8 领域模型微调 指令&数据输入格式 要求?
• 9 领域模型微调 领域评测集 构建?
• 10 领域模型词表扩增是不是有必要的?
• 11 如何训练自己的大模型?
• 12 训练中文大模型有啥经验?
• 13 指令微调的好处?
• 14 预训练和微调哪个阶段注入知识的?
• 15 想让模型学习某个领域或行业的知识,是应该预训练还是应该微调?
• 16 多轮对话任务如何微调模型?
• 17 微调后的模型出现能力劣化,灾难性遗忘是怎么回事?
• 18 微调模型需要多大显存?
• 19 大模型LLM进行SFT操作的时候在学习什么?
• 20 预训练和SFT操作有什么不同
• 21 样本量规模增大,训练出现OOM错
• 22 大模型LLM进行SFT 如何对样本进行优化?
• 23 模型参数迭代实验
• 24 微调大模型的一些建议
• 25 微调大模型时,如果 batch size 设置太小 会出现什么问题?
• 26 微调大模型时,如果 batch size 设置太大 会出现什么问题?
• 27 微调大模型时, batch size 如何设置问题?
• 28 微调大模型时, 优化器如何?
• 29 哪些因素会影响内存使用?
• 30 进行领域大模型预训练应用哪些数据集比较好?
• 31 用于大模型微调的数据集如何构建?
• 32 大模型训练loss突刺原因和解决办法
        • 32.1 大模型训练loss突刺是什么?
        • 32.2 为什么大模型训练会出现loss突刺?
        • 32.3 大模型训练loss突刺 如何解决?
• 33 什么是Cosine优化器?在大模型中应该怎么设置cosine优化器的周期比较好?
• 34 在预训练阶段,若模型训练文本时不包含标记,而在后续预测阶段却添加了标记;或者相反,训练阶段加入了
标记,但在预测时却没有使用,这两种情况下 benchmark 预测可能会遇到哪些问题呢?
• 35 SFT packing是什么?
• 36 SFT packing对SFT训练的影响是什么?
• 37 SFT阶段模型可以学习新知识么?
• 38 建立sft数据主要需要关注什么方面?
• 40 解决显存不够的方法?
• 41 指令策略的选择及其影响
• 42 如何解决prompt泛化性?
• 43 大模型SFT最重要的是什么,分次SFT会发生什么?

二、大模型SFT Trick篇

• 一、常见 SFT的开发流程是如何的?
• 二、训练数据要注重什么?
• 三、大 size 和小 size 模型的选择?
• 四、多任务训练时怎么确保每个任务都优秀?
• 五、SFT真的不能学到知识?
• 六、怎么科学挑选数据集?
• 七、怎么解决幻觉问题
• 八、BERT 开发与 LLM 开发有什么不同之处?
• 九、该选什么微调方法, Full tuning\P-tuning\Lora?
• 十、SFT 还有什么方面值得研究?
• 十一、介绍一下训练过程中,显存占用分析?
• 十二、介绍一下训练过程中,显存占用分析?
• 十三、训练数据数据质量评估
• 十四、SFT 调参技巧
        • 14.1 有哪些参数可以调呢?
        • 14.2 Loss function 如何调参?
        • 14.3 Learning rate 和 Batch size 如何调参?
        • 14.4 Epoch number 和 early stopping 如何调参?
        • 14.5 Optimizer 如何调参?
        • 14.6 Activation function 如何调参?
        • 14.7 Weights initialization 如何调参?
        • 14.8 Regularization 如何调参?

三 大模型训练经验篇

• 分布式训练框架选择?
• LLMs 训练时 有哪些有用的建议?
• 模型大小如何选择?
• 加速卡如何选择?

全部内容见

通过网盘分享的文件:03大模型(LLMs)微调面
链接: https://pan.baidu.com/s/1i3Sr19236jfJH1IXWVTHAg 提取码: f348 
--来自百度网盘超级会员v5的分享

http://www.lryc.cn/news/471218.html

相关文章:

  • Flutter升级与降级
  • 分布式并发场景的核心问题与解决方案
  • D - Many Segments 2(ABC377)
  • 数组指针和指针数组的区别
  • 【VUE点击父组件按钮,跳转到子组件】
  • Java列表排序:方法与实践
  • 哈希及其封装实现unordermap和set
  • 在 AMD GPU 上构建解码器 Transformer 模型
  • Canvas简历编辑器-选中绘制与拖拽多选交互设计
  • 简单工厂(Simple Factory)
  • ffmpeg拉流分段存储到文件-笔记
  • Java 实习工资大概是多少?——解读影响薪资的因素
  • 【Linux】万字详解:Linux文件系统与软硬链接
  • spacenavd
  • C#WPF的XAML的语法详谈和特性
  • 一篇文章讲透数据结构之二叉搜索树
  • 新手入门c++(8)
  • 新手铲屎官提问,有哪几款噪音低的宠物空气净化器推荐
  • 解决RabbitMQ脑裂问题
  • 经纬恒润AUTOSAR成功适配芯钛科技Alioth TTA8车规级芯片
  • 4、java random随机数、一维数组、二维数组
  • C++ 魔法三钥:解锁高效编程的封装、继承与多态
  • 姿态传感器(学习笔记上)
  • labelimg使用教程
  • 力扣21 : 合并两个有序链表
  • 【Spring】Spring Boot 配置文件(7)
  • 《向量数据库指南》——解锁Wikipedia文章向量的跨语言搜索秘籍
  • 【力扣 + 牛客 | SQL题 | 每日5题】牛客SQL热题204,201,215
  • 下载数据集用于图像分类并自动分为训练集和测试集方法
  • Python xlrd库介绍