当前位置: 首页 > news >正文

期中前学习复习总结

期中前终于把每一科的本质给搞明白了。这篇文章也将各学科剖分为两部分。

目录

本质

学法

从问题或条件出发思考问题

从条件出发思考问题

从结论/问题出发思考问题

整理知识与反向押题法

反向押题法


本质

作者是一个理科脑,什么都觉得只要我脑子够新东西我也能想出来。前段时间肝了几张53期中卷忽然发现并不是如此(啪啪打脸)。比如说语文,你根本想不到一道(看似)说理题要用蚂蚁讲的各种答题公式,一道开放题还要按照材料写的来答。生活中读的各种发音,一上卷子全都是错的。

我冥思苦想,终于发现了各科的区别:思维方式是完全不一样的!我是怎么看出来的?先说说各科的奇葩之处,语文我懂但不能答,数学我懂但是步骤不完整,英语我懂但是老是碰雷。那么无疑我的“思想为上”的思想是不对的。如果需要肝文科那我不得不转到另外一种思路:模版思想。

有一些东西,它存在是没有理由的,比如数学的公理。他并不像定理那样可以直接证明。例如,证明“两点之间,直线最短”,下面就是一段标准的说理式证明。

假想,如果有另外一条曲线在连接两点且它比直线更短,那么这条曲线一定可以拉伸为一条直线。而当它拉长为直线之后,则会比原来的“次长”直线要更长一截,这与原假想相谬,所以原命题正确。证毕。

但是有一些偏偏没法证明,比如1+1=2。(虽然也可以证明),但是我们在学习的时候需要知道吗?并不需要,因为它的证明对于我们的计算没有帮助。我们只需要知道,一个苹果和另外一个苹果放在一起是两个苹果就可以了。这正是模版思想:在满足模版条件的情况下,利用一个或多个模版来直接解决一个复杂问题。

对于模版思想,我一直不会在数学里轻易提倡。就像林哥前几天问我的“为啥量除以分率等于单位1”这个问题,我们需要知道“量除以分率等于单位1”这是一个模版,但是我们需要知道为什么,才可以更好地利用它。

当然,语文和英语利用它完全是另一码事。英语需要固定的语法和扎实的单词利用,这两者都属于一种模版;而语文的“情景交融”“承上启下”“比喻的好处”这类的都需要非常合理的模版,那为什么要用这个模版,就与我们的答题完全不相干了。数学之所以要知道模版怎么来是因为我们要从本质上判定这类题适不适用这种模版,但是语文和英语条件明确,也就没有什么必要了。

学法

这一章我主要是从数学里面整出来的一些学法,但是我仍然认为除了思想外语文英语和数学一样。

从问题或条件出发思考问题

这一部分是最重要的。来自三上三下数学课本“解决问题的策略”一单元。这一单元我们必须承认它尽管是低年级的一个小小的单元,在两本课本中占了不超30页,但是它教会了我们思考问题最重要的方式。举个例子,“宿舍老师整天罚站我们,还给我们吃难吃的饭,进宿舍还不让讲话,宿舍老师一定有bing!”其中,“宿管老师一定有bing!”是一个肯定结论,剩下的则是条件。我们思考这个命题,最先是怎么思考的?让我们分别剖析一下。

从条件出发思考问题

“宿舍老师整天罚站我们”这一部分是一段发泄性文字,其实转化成基本句式就是“我们经常被宿管老师要求罚站”。以“我”的角度来看这是宿舍老师的严厉。“还给我们吃难吃的饭”也是一段充满主观意图的文字,转化成基本句式即为“我们经常只能吃食堂难吃的饭”,这无疑是食堂的缺陷。“进宿舍还不让讲话”,单看表达是缺主语的,转化成基本句式应该是“宿管老师要求我们进宿舍之后不能讲话”。这句话与宿管老师有关,我们可以重点关注。最后看到结论,那其中三句条件,有哪句是与结论有关的?就是“宿管老师整天罚站我们”和“进宿舍还不让讲话”。

从结论/问题出发思考问题

我们也可以从“宿管老师有bing!”这句结论反推。宿管老师为什么有bing?无疑是虐待或者不满足我们。那么虐待可以推到条件“罚站”一句,不满足我们可以推到条件“不让讲话”一句。咋看之下,“难吃的饭”这句话也是不满足我们,但是实际上吃饭这句话不是由宿管老师决定的,所以分析时不应受到这句话影响。

整理知识与反向押题法

我的同桌猫哥是一位受到大家赞誉的“笔记哥”,老师经常拿他好看的笔记下面的作业解答来给大家展示。然而大家有所不知的是,他平时上课时都在抄我的笔记(非自夸勿喷)。这个时候一个做笔记的好处就体现出来了:外部输出法。

这个方法大家可能比较陌生,毕竟没有几个博主会讲到这种底层的逻辑。但是这确实是一个我之前看某博主的视频知道的方法。我记笔记除了上课老师讲的之外,还会有自己脑中本有的,这就是一个输出练习。输出多了之后,你对每个知识都会记忆清晰。这个时候,你把知识脉络理清楚了,就可以进入到下一阶段:反向押题法了。

反向押题法

反向押题法建立在知识体系上。普通的做题,是先做题再思考知识点,而我的反向押题法是先思考知识点再押题,所以我给他取名“反向”。反向押题法的思维流程是这样子的:有某知识点,想到之前做过与这知识点相关的哪些题,还能再出哪些题。在这里我也不多叙述了,毕竟知识点梳理清晰就已经非常难了。如果运用好前面的方法,那么最后的方法也能轻松理解。

http://www.lryc.cn/news/471028.html

相关文章:

  • K8S如何基于Istio重新实现微服务
  • MediaPipe 与 OpenCV 的结合——给心爱的人画一个爱心吧~
  • 心觉:成大事,不怕慢,就怕站
  • 练习LabVIEW第二十三题
  • 集成对接案例分享:金蝶云与聚水潭数据对接
  • 高级主题-灾难恢复与业务连续性
  • R语言实现随机森林分析:从入门到精通
  • 【vs2022】windows可用的依赖预编译库
  • 基础设施即代码(IaC):自动化基础设施管理的未来
  • C# 创建型设计模式----原型模式
  • Python数据分析NumPy和pandas(十五、pandas 数据加载、存储和文件格式)
  • 正则表达式以及密码匹配案例手机号码脱敏案例
  • 五、数组切片make
  • SSA-CNN-LSTM-MATT多头注意力机制多特征分类预测
  • 51单片机完全学习——LCD1602液晶显示屏
  • 【知识科普】今天聊聊前端打包工具webpack
  • 雷池社区版中升级雷池遇到问题
  • C++基础:constexpr,类型转换和选择语句
  • STM32 RTC时间无法设置和读取
  • go语言中defer用法详解
  • iOS 18.2开发者预览版 Beta 1版本发布,欧盟允许卸载应用商店
  • 【SQL】SQL函数
  • NSSCTF刷题篇web部分
  • 超子物联网HAL库笔记:准备篇
  • FoRAG:面向网络增强型长文本问答的事实优化检索增强生成方法
  • Android NSD局域网发现服务
  • 算法的学习笔记—左旋转字符串(牛客JZ58)
  • Mac 上无法烧录 ESP32C3 的问题记录:A fatal error occurred:Failed to write to target RAM
  • ios 项目升级极光SDK
  • 【Java】java | logback日志配置 | 按包配置级别