【小问题】距离估计和频率估计的方差下界推导出距离估计的方差下界
【1】OFDM Radar Algorithms in Mobile Communication Networks pp34
文章目录
如何根据 d ^ = n ^ c 0 2 Δ f N P e r \hat{d} = \frac{\hat{n}c_0}{2\Delta f N_{\mathrm{Per}}} d^=2ΔfNPern^c0和 var [ ω ^ ] ≥ 6 σ N 2 ( N 2 − 1 ) N \operatorname{var}[\hat{\omega}] \geq \frac{6\sigma_N^2}{(N^2-1)N} var[ω^]≥(N2−1)N6σN2推出 var [ d ^ ] ≥ 6 σ N 2 ( N 2 − 1 ) N ( c 0 4 π Δ f ) 2 \operatorname{var}[\hat{d}] \geq \frac{6\sigma_N^2}{(N^2-1)N} \left( \frac{c_0}{4\pi \Delta f} \right)^2 var[d^]≥(N2−1)N6σN2(4πΔfc0)2
要从给定的距离估计公式和频率估计的方差下界推导出距离估计的方差下界,我们可以按照以下步骤进行:
1. 频率和距离之间的关系
已知距离估计的公式为:
d ^ = n ^ c 0 2 Δ f N P e r \hat{d} = \frac{\hat{n} c_0}{2 \Delta f N_{\mathrm{Per}}} d^=2ΔfNPern^c0
其中:
- n ^ \hat{n} n^ 是从周期图中检测到的频率索引。
- c 0 c_0 c0 是信号传播速度。
- Δ f \Delta f Δf 是频率分辨率。
- N P e r N_{\mathrm{Per}} NPer 是周期图的样本数量。
2. 计算 d ^ \hat{d} d^ 对 n ^ \hat{n} n^ 的导数
我们可以计算 d ^ \hat{d} d^ 对 n ^ \hat{n} n^ 的偏导数,以便将其用于方差的转换:
∂ d ^ ∂ n ^ = c 0 2 Δ f N P e r \frac{\partial \hat{d}}{\partial \hat{n}} = \frac{c_0}{2 \Delta f N_{\mathrm{Per}}} ∂n^∂d^=2ΔfNPerc0
3. 将频率的方差转化为距离的方差
根据 CRB 的转换关系:
var [ d ^ ] = ∣ ∂ d ^ ∂ n ^ ∣ 2 var [ n ^ ] \operatorname{var}[\hat{d}] = \left| \frac{\partial \hat{d}}{\partial \hat{n}} \right|^2 \operatorname{var}[\hat{n}] var[d^]= ∂n^∂d^ 2var[n^]
将上面计算的导数代入:
var [ d ^ ] = ( c 0 2 Δ f N P e r ) 2 var [ n ^ ] \operatorname{var}[\hat{d}] = \left( \frac{c_0}{2 \Delta f N_{\mathrm{Per}}} \right)^2 \operatorname{var}[\hat{n}] var[d^]=(2ΔfNPerc0)2var[n^]
4. 从频率的 CRB 获得 var [ n ^ ] \operatorname{var}[\hat{n}] var[n^]
根据频率估计的 Cramér-Rao Bound,我们有:
var [ ω ^ ] ≥ 6 σ N 2 ( N 2 − 1 ) N \operatorname{var}[\hat{\omega}] \geq \frac{6\sigma_N^2}{(N^2-1)N} var[ω^]≥(N2−1)N6σN2
注意到频率 ω ^ \hat{\omega} ω^ 与索引 n ^ \hat{n} n^ 的关系为:
ω ^ = 2 π n ^ N P e r \hat{\omega} = \frac{2\pi \hat{n}}{N_{\mathrm{Per}}} ω^=NPer2πn^
因此:
n ^ = N P e r ω ^ 2 π \hat{n} = \frac{N_{\mathrm{Per}} \hat{\omega}}{2\pi} n^=2πNPerω^
推导方差的关系:
var [ n ^ ] = ( N P e r 2 π ) 2 var [ ω ^ ] \operatorname{var}[\hat{n}] = \left( \frac{N_{\mathrm{Per}}}{2\pi} \right)^2 \operatorname{var}[\hat{\omega}] var[n^]=(2πNPer)2var[ω^]
5. 将 var [ n ^ ] \operatorname{var}[\hat{n}] var[n^] 代入距离方差公式
将 var [ ω ^ ] \operatorname{var}[\hat{\omega}] var[ω^] 的 CRB 代入:
var [ n ^ ] ≥ ( N P e r 2 π ) 2 6 σ N 2 ( N 2 − 1 ) N \operatorname{var}[\hat{n}] \geq \left( \frac{N_{\mathrm{Per}}}{2\pi} \right)^2 \frac{6\sigma_N^2}{(N^2-1)N} var[n^]≥(2πNPer)2(N2−1)N6σN2
将其代入到距离方差公式中:
var [ d ^ ] ≥ ( c 0 2 Δ f N P e r ) 2 ( N P e r 2 π ) 2 6 σ N 2 ( N 2 − 1 ) N \operatorname{var}[\hat{d}] \geq \left( \frac{c_0}{2 \Delta f N_{\mathrm{Per}}} \right)^2 \left( \frac{N_{\mathrm{Per}}}{2\pi} \right)^2 \frac{6\sigma_N^2}{(N^2-1)N} var[d^]≥(2ΔfNPerc0)2(2πNPer)2(N2−1)N6σN2
6. 简化公式
最终的方差表达式变为:
var [ d ^ ] ≥ 6 σ N 2 ( N 2 − 1 ) N ( c 0 4 π Δ f ) 2 \operatorname{var}[\hat{d}] \geq \frac{6\sigma_N^2}{(N^2-1)N} \left( \frac{c_0}{4\pi \Delta f} \right)^2 var[d^]≥(N2−1)N6σN2(4πΔfc0)2
这就是你提到的结果:
var [ d ^ ] ≥ 6 σ N 2 ( N 2 − 1 ) N ( c 0 4 π Δ f ) 2 \operatorname{var}[\hat{d}] \geq \frac{6\sigma_N^2}{(N^2-1)N} \left( \frac{c_0}{4\pi \Delta f} \right)^2 var[d^]≥(N2−1)N6σN2(4πΔfc0)2
总结来说,主要步骤是通过计算导数关系,将频率的方差转化为距离的方差,并结合频率的 CRB 得到最终结果。