当前位置: 首页 > news >正文

【小问题】距离估计和频率估计的方差下界推导出距离估计的方差下界

【1】OFDM Radar Algorithms in Mobile Communication Networks pp34

如何根据 d ^ = n ^ c 0 2 Δ f N P e r \hat{d} = \frac{\hat{n}c_0}{2\Delta f N_{\mathrm{Per}}} d^=fNPern^c0 var ⁡ [ ω ^ ] ≥ 6 σ N 2 ( N 2 − 1 ) N \operatorname{var}[\hat{\omega}] \geq \frac{6\sigma_N^2}{(N^2-1)N} var[ω^](N21)N6σN2推出 var ⁡ [ d ^ ] ≥ 6 σ N 2 ( N 2 − 1 ) N ( c 0 4 π Δ f ) 2 \operatorname{var}[\hat{d}] \geq \frac{6\sigma_N^2}{(N^2-1)N} \left( \frac{c_0}{4\pi \Delta f} \right)^2 var[d^](N21)N6σN2(4πΔfc0)2

要从给定的距离估计公式和频率估计的方差下界推导出距离估计的方差下界,我们可以按照以下步骤进行:

1. 频率和距离之间的关系

已知距离估计的公式为:
d ^ = n ^ c 0 2 Δ f N P e r \hat{d} = \frac{\hat{n} c_0}{2 \Delta f N_{\mathrm{Per}}} d^=fNPern^c0
其中:

  • n ^ \hat{n} n^ 是从周期图中检测到的频率索引。
  • c 0 c_0 c0 是信号传播速度。
  • Δ f \Delta f Δf 是频率分辨率。
  • N P e r N_{\mathrm{Per}} NPer 是周期图的样本数量。

2. 计算 d ^ \hat{d} d^ n ^ \hat{n} n^ 的导数

我们可以计算 d ^ \hat{d} d^ n ^ \hat{n} n^ 的偏导数,以便将其用于方差的转换:
∂ d ^ ∂ n ^ = c 0 2 Δ f N P e r \frac{\partial \hat{d}}{\partial \hat{n}} = \frac{c_0}{2 \Delta f N_{\mathrm{Per}}} n^d^=fNPerc0

3. 将频率的方差转化为距离的方差

根据 CRB 的转换关系:
var ⁡ [ d ^ ] = ∣ ∂ d ^ ∂ n ^ ∣ 2 var ⁡ [ n ^ ] \operatorname{var}[\hat{d}] = \left| \frac{\partial \hat{d}}{\partial \hat{n}} \right|^2 \operatorname{var}[\hat{n}] var[d^]= n^d^ 2var[n^]

将上面计算的导数代入:
var ⁡ [ d ^ ] = ( c 0 2 Δ f N P e r ) 2 var ⁡ [ n ^ ] \operatorname{var}[\hat{d}] = \left( \frac{c_0}{2 \Delta f N_{\mathrm{Per}}} \right)^2 \operatorname{var}[\hat{n}] var[d^]=(fNPerc0)2var[n^]

4. 从频率的 CRB 获得 var ⁡ [ n ^ ] \operatorname{var}[\hat{n}] var[n^]

根据频率估计的 Cramér-Rao Bound,我们有:
var ⁡ [ ω ^ ] ≥ 6 σ N 2 ( N 2 − 1 ) N \operatorname{var}[\hat{\omega}] \geq \frac{6\sigma_N^2}{(N^2-1)N} var[ω^](N21)N6σN2

注意到频率 ω ^ \hat{\omega} ω^ 与索引 n ^ \hat{n} n^ 的关系为:
ω ^ = 2 π n ^ N P e r \hat{\omega} = \frac{2\pi \hat{n}}{N_{\mathrm{Per}}} ω^=NPer2πn^

因此:
n ^ = N P e r ω ^ 2 π \hat{n} = \frac{N_{\mathrm{Per}} \hat{\omega}}{2\pi} n^=2πNPerω^

推导方差的关系:
var ⁡ [ n ^ ] = ( N P e r 2 π ) 2 var ⁡ [ ω ^ ] \operatorname{var}[\hat{n}] = \left( \frac{N_{\mathrm{Per}}}{2\pi} \right)^2 \operatorname{var}[\hat{\omega}] var[n^]=(2πNPer)2var[ω^]

5. 将 var ⁡ [ n ^ ] \operatorname{var}[\hat{n}] var[n^] 代入距离方差公式

var ⁡ [ ω ^ ] \operatorname{var}[\hat{\omega}] var[ω^] 的 CRB 代入:
var ⁡ [ n ^ ] ≥ ( N P e r 2 π ) 2 6 σ N 2 ( N 2 − 1 ) N \operatorname{var}[\hat{n}] \geq \left( \frac{N_{\mathrm{Per}}}{2\pi} \right)^2 \frac{6\sigma_N^2}{(N^2-1)N} var[n^](2πNPer)2(N21)N6σN2

将其代入到距离方差公式中:
var ⁡ [ d ^ ] ≥ ( c 0 2 Δ f N P e r ) 2 ( N P e r 2 π ) 2 6 σ N 2 ( N 2 − 1 ) N \operatorname{var}[\hat{d}] \geq \left( \frac{c_0}{2 \Delta f N_{\mathrm{Per}}} \right)^2 \left( \frac{N_{\mathrm{Per}}}{2\pi} \right)^2 \frac{6\sigma_N^2}{(N^2-1)N} var[d^](fNPerc0)2(2πNPer)2(N21)N6σN2

6. 简化公式

最终的方差表达式变为:
var ⁡ [ d ^ ] ≥ 6 σ N 2 ( N 2 − 1 ) N ( c 0 4 π Δ f ) 2 \operatorname{var}[\hat{d}] \geq \frac{6\sigma_N^2}{(N^2-1)N} \left( \frac{c_0}{4\pi \Delta f} \right)^2 var[d^](N21)N6σN2(4πΔfc0)2

这就是你提到的结果:
var ⁡ [ d ^ ] ≥ 6 σ N 2 ( N 2 − 1 ) N ( c 0 4 π Δ f ) 2 \operatorname{var}[\hat{d}] \geq \frac{6\sigma_N^2}{(N^2-1)N} \left( \frac{c_0}{4\pi \Delta f} \right)^2 var[d^](N21)N6σN2(4πΔfc0)2

总结来说,主要步骤是通过计算导数关系,将频率的方差转化为距离的方差,并结合频率的 CRB 得到最终结果。

http://www.lryc.cn/news/470068.html

相关文章:

  • Selenium爬虫技术:如何模拟鼠标悬停抓取动态内容
  • Z-BlogPHP显示错误Undefined array key 0 (set_error_handler)的解决办法
  • java-实例化一个List,然后添加数据的方法详解
  • 【Linux系统】Ubuntu的简单操作
  • 标准日志插件项目【C/C++】
  • SpingBoot原理
  • Cout输出应用举例
  • java的无锁编程和锁机制
  • vue实现富文本编辑器上传(粘贴)图片 + 文字
  • 子集和全排列(深度优先遍历)问题
  • 判断检测框是否在感兴趣区域(ROI)内
  • 正点原子阿尔法ARM开发板-IMX6ULL(九)——关于SecureCRT连接板子上的ubuntu
  • 微信支付Java+uniapp微信小程序
  • 【NOIP提高组】加分二叉树
  • HarmonyOS 相对布局(RelativeContainer)
  • webpack5搭建react脚手架详细步骤
  • 速盾:高防cdn怎么拦截恶意ip?
  • 太阳能面板分割系统:训练自动化
  • C++笔记---位图
  • ABC370
  • C语言[求x的y次方]
  • JavaScript part2
  • HarmonyOS开发 - 本地持久化之实现LocalStorage实例
  • 【C++打怪之路Lv12】-- 模板进阶
  • 第23周Java主流框架入门-SpringMVC 2.RESTful开发风格
  • QT枚举类型转字符串和使用QDebug<<重载输出私有枚举类型
  • 手机柔性屏全贴合视觉应用
  • 《Python游戏编程入门》注-第3章3
  • Netty-TCP服务端粘包、拆包问题(两种格式)
  • centos安装指定版本的jenkins