当前位置: 首页 > news >正文

Fast Simulation of Mass-Spring Systems in Rust 论文阅读

参考资料:

文章目录

  • 概述
  • 流程概述:
  • 1.前置知识
      • 1.1 运动方程(牛顿第二定律)
      • 1.2 二阶导数的离散化
      • 1.3 代入运动方程
      • 1.4 物理意义
  • 2. 将隐式积分问题转化为一个优化问题
    • 2.1 要解的是隐式积分问题是:
    • 2.2 引入辅助变量d
    • 2.3 Block Coordinate Descent(块坐标下降法)
      • Global Step部分

概述

这篇论文通过引入弹簧方向的辅助变量,并采用块坐标下降法解决了传统隐式欧拉法中速度慢的问题,成功实现了弹簧质点系统的快速仿真。该方法特别适用于实时应用,并且在低迭代次数下也能得到较好的视觉效果。

流程概述:

1.前置知识

1.1 运动方程(牛顿第二定律)

在物理仿真中,系统的运动通常由二阶微分方程描述,例如: M d 2 q d t 2 = f ( q ) M \frac{d^2q}{dt^2} = f(q) Mdt2d2q=f(q)
其中:

  • ( M ) 是质量矩阵,表示系统中各质点的质量。
  • ( q(t) ) 是位置向量,表示质点的位置。
  • ( f(q) ) 是作用在质点上的力,通常是位移 ( q ) 的函数。

1.2 二阶导数的离散化

使用中心差分法,二阶导数 ( d 2 q d t 2 \frac{d^2q}{dt^2} dt2d2q ) 的离散形式为:
d 2 q d t 2 ≈ q n + 1 − 2 q n + q n − 1 h 2 \frac{d^2q}{dt^2} \approx \frac{q_{n+1} - 2q_n + q_{n-1}}{h^2} dt2d2qh2qn+12qn+qn1
其中:

  • ( q_n ) 是时间 ( t_n ) 时的位置。
  • ( q_{n+1} ) 是时间 ( t_{n+1} = t_n + h ) 时的位置。
  • ( q_{n-1} ) 是时间 ( t_{n-1} = t_n - h ) 时的位置。
  • ( h ) 是时间步长

1.3 代入运动方程

将二阶导数的离散化形式代入运动方程 ( M d 2 q d t 2 = f ( q ) M \frac{d^2q}{dt^2} = f(q) Mdt2d2q=f(q) ):
M q n + 1 − 2 q n + q n − 1 h 2 = f ( q n + 1 ) M \frac{q_{n+1} - 2q_n + q_{n-1}}{h^2} = f(q_{n+1}) Mh2qn+12qn+qn1=f(qn+1)
最后我们得到隐式欧拉法的公式:
M ( q n + 1 − 2 q n + q n − 1 ) = h 2 f ( q n + 1 ) M(q_{n+1} - 2q_n + q_{n-1}) = h^2 f(q_{n+1}) M(qn+12qn+qn1)=h2f(qn+1)
其中,( q n + 1 q_{n+1} qn+1 ) 是需要通过求解获得的未知位置,( f ( q n + 1 ) f(q_{n+1}) f(qn+1) ) 依赖于 ( q n + 1 q_{n+1} qn+1 ),因此这是一个隐式公式

1.4 物理意义

在这里插入图片描述

2. 将隐式积分问题转化为一个优化问题

2.1 要解的是隐式积分问题是:

M q n + 1 − 2 q n + q n − 1 h 2 = f ( q n + 1 ) M \frac{q_{n+1} - 2q_n + q_{n-1}}{h^2} = f(q_{n+1}) Mh2qn+12qn+qn1=f(qn+1)
其中:
n是时间迭代步
q是所有粒子的位置向量
M是粒子质量对角矩阵
h是时间步长
f是整个系统的保守力
q n + 1 q_{n+1} qn+1是未知状态量,设为x。 q n q_{n} qn q n − 1 q_{n-1} qn1是已知量,设为 y = 2 q n − q n − 1 y=2q_{n}-q_{n-1} y=2qnqn1
所以得到式子 M ( x − y ) = h 2 f ( x ) M(x-y)=h^2f(x) M(xy)=h2f(x)
求解这个方程,等效于求解下面这个方程的极小值:
(令g(x)求导为0得到上式)
g ( x ) = 1 2 ( x − y ) T M ( x − y ) + h 2 E ( x ) g(x) = \frac{1}{2}(x - y)^T M (x - y) + h^2 E(x) g(x)=21(xy)TM(xy)+h2E(x)

其中,( E ) 为系统的势能(因为 ( ∇ E = − f \nabla E = -f E=f ),因此 ( ∇ g = 0 \nabla g = 0 g=0 ) 等效于公式 (7))。

按照胡克定律,弹簧的弹性势能为:

E = 1 2 k ( ∥ p 1 − p 2 ∥ − r ) 2 E = \frac{1}{2} k ( \|p_1 - p_2\| - r )^2 E=21k(p1p2r)2

其中:

  • ( p 1 , p 2 p_1, p_2 p1,p2 ) 为两个粒子的位置,
  • ( r ) 为弹簧的静止长度(rest length)。

但如果直接采用这个形式,上面的 ( g(x) ) 极值问题就不太好解。为了将上式变形为一个方便求解的形式,作者引入了一个辅助变量 ( d ∈ R 3 d \in \mathbb{R}^3 dR3 )。

2.2 引入辅助变量d

公式如下:
假设d是一个未知的三位向量,那么:
( ∥ p 1 − p 2 ∥ − r ) 2 = min ⁡ ∥ d ∥ = r ∥ p 1 − p 2 − d ∥ 2 (\|p_1 - p_2\| - r)^2 = \min_{\|d\|=r} \|p_1 - p_2 - d\|^2 (p1p2r)2=d=rminp1p2d2

1. 左边公式的物理意义:

左边的公式 ( ( ∥ p 1 − p 2 ∥ − r ) 2 (\|p_1 - p_2\| - r)^2 (p1p2r)2 ) 是弹簧势能的表示形式,依据胡克定律,它表示弹簧当前长度 ( |p_1 - p_2| ) 与静止长度 ( r ) 之间的差的平方。这里 ( p 1 p_1 p1 ) 和 ( p 2 p_2 p2 ) 是弹簧两端质点的位置

2. 右边公式的几何解释:

右边的公式引入了一个辅助向量 ( d ),并对其施加约束 ( |d| = r )。这个向量表示固定长度为 ( r ) 的向量,但方向可以自由变化。优化问题为:
min ⁡ ∥ d ∥ = r ∥ p 1 − p 2 − d ∥ 2 \min_{\|d\|=r} \|p_1 - p_2 - d\|^2 d=rminp1p2d2
这个问题的意思是寻找一个向量 ( d ),使得 ( p 1 − p 2 p_1 - p_2 p1p2 ) 与 ( d ) 的差最小,即让 ( ∥ p 1 − p 2 − d ∥ \|p_1 - p_2 - d\| p1p2d ) 最小化

显然当 d = r p 1 − p 2 ∥ p 1 − p 2 ∥ 时取极小值 显然当d = r \frac{p_1 - p_2}{\|p_1 - p_2\|}时取极小值 显然当d=rp1p2p1p2时取极小值

重新定义弹簧的弹性势能E(x,d)

在这里插入图片描述

矩阵L和J的推导

在这里插入图片描述

第一行的式子为什么可以等于L和J,证明如下:
忽略 d i T d i d^T_{i}d_{i} diTdi是关于 d 的平方项,但这项对 x 的优化没有直接影响,因此我们暂时忽略它,只关注 x 和 d 之间的关系

在这里插入图片描述
S i T S_i^T SiT是一个选择矩阵,是一个单位向量(标准基),用于选择第 𝑖个弹簧的位移变量 d i d_{i} di

在这里, d = S i T d d = S_i^T d d=SiTd 可以理解为,向量 d d d 中的每个分量 d i d_i di 对应一个特定的弹簧的偏移量。通过 S i T d S_i^T d SiTd,我们提取了 d d d 中与第 i i i 个弹簧相关的那部分位移。

换句话说, S i T S_i^T SiT 确保我们从总的 d d d 向量中只选取第 i i i 个元素(因为 S i T S_i^T SiT 是一个标准基,其他位置上的元素都会被置为 0)。

因此,对于每个弹簧 i i i,我们有:

d i = S i T d d_i = S_i^T d di=SiTd

这表示 d i d_i di 是通过选择矩阵 S i T S_i^T SiT d d d 中提取出来的。
在这里插入图片描述

外力为什么放在 X T () X^T() XT()里面

外力 𝑓 e x t 𝑓_{ext} fext被视作对系统的额外作用力,所以在总的能量函数中,它会影响线性部分,即外力对位移 x 的作用是线性的。因此,外力项自然可以放入这个线性项中
乘以 h 2 ℎ^2 h2体现了外力在整个时间步长内的累积效应
力和加速度是直接相关的。加速度是位移 𝑥对时间 𝑡的二阶导数。而当我们离散化这个二阶导数时,时间步长 ℎ被平方了

2.3 Block Coordinate Descent(块坐标下降法)

在这里插入图片描述

Global Step部分

在这里插入图片描述

http://www.lryc.cn/news/467381.html

相关文章:

  • javaWeb项目-ssm+vue志愿者招募网站功能说明介绍
  • Selenium + Titanium代理获取请求的接口数据
  • ELK Stack与Graylog:强大的日志分析和可视化工具
  • 安全见闻(6)——开阔眼界,不做井底之蛙
  • GRU神经网络理解
  • Windows 10、Office 2016/2019 和 PPTP 和 L2TP协议即将退役,企业应尽早做好准备
  • 论文阅读:Guided Linear Upsampling
  • 深度图和RGB图对齐
  • 滑动窗口与TCP的缓冲区(buff)的关系
  • 一款好用的搜索软件——everthing(搜索比文件资源管理器快)
  • C#WPF的App.xaml启动第一个窗体的3种方式
  • 【JAVA毕设】基于JAVA的酒店管理系统
  • 聚类--机器学习西瓜书阅读笔记(六)
  • OpenHarmony(1)开发环境搭建
  • Triton服务在ASR语音识别系统中的实现
  • Typora一款极简Markdown文档编辑、阅读器,实时预览,所见即所得,多主题,免费生成序列号!
  • python机器人编程——用python调用API控制wifi小车的实例程序
  • 面试学习整理-线程池
  • Debian会取代CentOS成为更主流的操作系统吗?
  • 网络安全领域推荐证书介绍及备考指南
  • SpringBoot项目ES6.8升级ES7.4.0
  • 深度学习 之 模型部署 使用Flask和PyTorch构建图像分类Web服务
  • MFC工控项目实例二十六创建数据库
  • springmvc源码流程解析(一)
  • 【论文阅读】SRGAN
  • kubelet PLEG实现
  • leetcode49:字母异位词分组
  • 一个将.Geojson文件转成shapefile和kml文件的在线页面工具(续)
  • 论文阅读(二十四):SA-Net: Shuffle Attention for Deep Convolutional Neural Networks
  • 基于YOLOv8深度学习的智能道路裂缝检测与分析系统【python源码+Pyqt5界面+数据集+训练代码】