当前位置: 首页 > news >正文

YOLO V3 网络构架解析

YOLO V3(You Only Look Once version 3)是由Joseph Redmon等人于2018年提出的一种基于深度学习的目标检测算法。它在速度和精度上相较于之前的版本有了显著提升,成为计算机视觉领域的一个重要里程碑。本文将详细解析YOLO V3的网络架构,帮助读者理解其内部工作机制。

一、网络结构概述

YOLO V3的网络结构主要由三部分组成:特征提取网络(backbone)、特征融合网络(neck)和检测头(head)。

  1. 特征提取网络(backbone)
    • YOLO V3使用Darknet-53作为特征提取网络。Darknet-53由53个卷积层和若干残差块(res_block)组成,可以提取图像的高层次特征。
    • Darknet-53的设计借鉴了残差网络(ResNet)的思想,通过引入残差块(res_block)来解决深度神经网络中的梯度消失和表示瓶颈问题。
    • 每个残差块由多个残差单元(res_unit)组成,通过短路连接(shortcut connection)来保证梯度的有效传递。
  2. 特征融合网络(neck)
    • YOLO V3采用特征金字塔网络(FPN)进行特征融合。FPN可以从图像中提取不同尺度和分辨率的特征,然后将它们组合成一个特征金字塔。
    • 这个特征金字塔可以用于检测图像中不同大小的物体,提高了检测的准确性和召回率。
    • 在FPN中,不同尺度的特征图通过上采样和拼接操作进行融合,从而捕捉到更多有用的信息。
  3. 检测头(head)
    • YOLO V3的检测头由三个卷积层组成,用于检测目标的位置和类别。
    • 第一个卷积层用于缩小特征图的尺寸,第二个卷积层用于提取特征,第三个卷积层用于预测边界框的坐标、置信度得分和类别概率。
    • 最终的输出形式为:batchSize × (4 + 1 + 类别总数) × 特征图宽 × 特征图高

二、关键组件解析
  1. DBL(Darknetconv2d_BN_Leaky)
    • DBL是YOLO V3的基本组件,由卷积层(Convolution)、批量归一化层(Batch Normalization)和Leaky ReLU激活函数组成。
    • 卷积层负责提取图像特征,批量归一化层能够加速网络训练并提高模型性能,而Leaky ReLU激活函数则解决了ReLU函数在负数区域的问题,使得网络能够更好地学习非线性特征。
  2. Res Unit(残差单元)
    • 残差单元是Darknet-53网络中的关键组件,通过引入短路连接来解决深度神经网络中的梯度消失问题。
    • 在残差单元中,输入会被复制并添加到经过一系列卷积和激活函数处理后的输出上,从而保证了梯度的有效传递。
  3. Concat(张量拼接)
    • Concat操作是YOLO V3在特征融合过程中采用的一种技术,用于将不同尺度的特征图进行拼接。
    • 具体而言,Darknet中间层的特征图会与后面某一层的上采样特征图进行拼接,从而实现不同尺度特征的融合。
    • 这种融合方式有助于网络捕捉到更多有用的信息,提高目标检测的准确性。
  4. Add(张量相加)
    • Add操作是另一种特征融合方式,与Concat操作不同,Add操作是将两个张量直接相加,不会扩充维度。
    • Add操作来源于ResNet思想,将输入的特征图与输出特征图对应维度进行相加。

三、多尺度预测

YOLO V3采用了多尺度预测的思想,将网络分为三个分支:Y1、Y2和Y3。这三个分支分别负责检测不同尺度的目标。

  • Y1分支负责检测较小的目标。
  • Y2分支负责检测中等大小的目标。
  • Y3分支则负责检测较大的目标。

通过多尺度预测,YOLO V3能够更好地适应不同尺寸的目标,从而提高检测精度。

输入映射到输出:

四、总结

YOLO V3作为一种高效的目标检测算法,在实际应用中展现出了卓越的性能。其网络结构由特征提取网络、特征融合网络和检测头三部分组成,通过Darknet-53、FPN和多尺度预测等技术,实现了高效性和准确性的平衡。通过对YOLO V3网络结构的深入解析,我们可以更好地理解其工作原理,从而更好地应用这一强大的模型来解决实际问题。

http://www.lryc.cn/news/467271.html

相关文章:

  • 【zlm】 webrtc源码讲解(二)
  • 5G RedCap工业路由器赋能电力物联网应用
  • 029.浏览器自动化-抓取#document下的内容
  • 2024前端html5,css3面试题总汇
  • css实现外层不换行,内层换行
  • word取消自动单词首字母大写
  • flex常用固定搭配
  • Kafka、Kafka Streams、Drools、Redis 和分布式数据库的风控系统程序
  • C++在实际项目中的应用第一课:游戏开发中的C++
  • 一键下载海外youtbe视频 解锁版 支持多分辨率
  • Scala内部类的运用
  • 【在Linux世界中追寻伟大的One Piece】Socket编程UDP
  • 机器学习在聚合物及其复合材料中的应用与实践
  • 用大模型或者预训练模型对图片进行OCR
  • 如何使用的是github提供的Azure OpenAI服务
  • elementUI进度条el-progress不显示白色
  • 学习笔记——路由——IP组播-PIM(协议无关组播)-概述/PIM模式
  • TCP 协议学习
  • python3的基本数据类型:String(字符串)
  • 面试总结(2024/10/16)
  • 从图像识别到聊天机器人:Facebook AI的多领域应用
  • linux中级(NFS服务器)
  • 微软主动出击,“钓”出网络钓鱼者
  • Xcode16 编译运行YYCache iOS18 sqlite3_finalize 闪退问题解决方案
  • Kafka-Windows搭建全流程(环境,安装包,编译,消费案例,远程连接,服务自启,可视化工具)
  • django模板相关配置
  • MongoDB等保限制下的连接认证问题
  • 2024 睿抗机器人开发者大赛(RAICOM)-【网络安全】CTF 部分WP
  • idea 无法输入中文 快速解决
  • 掌握ElasticSearch(五):查询和过滤器