当前位置: 首页 > news >正文

RNN、LSTM 与 Bi-LSTM

一. RNN

循环神经网络(Recurrent Neural Network, RNN)是深度学习领域一类具有内部自连接的神经网络能够学习复杂的矢量到矢量的映射。
最大特点:前面的序列数据可以用作后面的结果预测中。
一个简单的循环神经网络结构,其结构包含三部分,分别为输入层、隐藏层和输出层

  1. 这是一个神经元:
    在这里插入图片描述
    输入x、a,经过变换,我们可以得到 y= K1x+K2a+b
  2. 如果在多一点呢??
    在这里插入图片描述
    如此,我们可以得到a1、y1;ai、yi。
  3. 那如何简便代表呢??
    在这里插入图片描述
    现在你就学会了RNN结构。

普通的RNN有以下局限性:

  • 前面序列信息在传递到后部的同时,信息权重下降,导致重要信息丢失。
  • 求解过程中梯度消失/爆炸
梯度消失:
是指在深度神经网络中,当进行反向传播算法计算梯度时,梯度值随着网络层数的增加而迅速减小,最终变得非常接近于零。
这意味着网络的权重更新非常小,导致学习过程几乎停滞。影响:1. )学习速度慢:由于梯度非常小,权重更新几乎停滞,网络很难学习到有效的特征。2. )难以训练深层网络:深层网络更容易受到梯度消失的影响,因为每一层的梯度都会乘以前一层的梯度,这会导致最终的梯度非常小。梯度爆炸:
是指在深度神经网络中,梯度在反向传播过程中随着网络层数的增加而迅速增大,最终导致数值溢出或非常大的梯度值,
使得权重更新过大,网络权重变得不稳定。影响:1. )权重更新过大:梯度值过大导致权重更新过大,这可能会使网络权重迅速偏离最优值,导致学习过程不稳定。2. )数值稳定性问题:梯度值过大可能导致数值溢出,即计算机无法表示的数值,这会直接导致训练过程失败。

我们引入了新的LSTM网络

二. LSTM

三. Bi-LSTM

http://www.lryc.cn/news/466532.html

相关文章:

  • 第一性原理
  • DOM NamedNodeMap 接口详解
  • EasyExcel自定义下拉注解的三种实现方式
  • Burp Suite Professional 2024.9 for macOS x64 ARM64 - 领先的 Web 渗透测试软件
  • 使用Mock库进行依赖注入的实用指南
  • nosql课本习题
  • springboot 3.2.5集成spring security 只放行get请求,其他请求403
  • 【linux】麒麟v10安装ELKB(ARM架构)
  • 帝国CMS – AutoTitlePic 自动生成文章标题图片插件
  • Docker安装Mysql5.7,解决无法访问DockerHub问题
  • React中使用Antd开源组件Popover等部分组件原生样式改变问题
  • Linux 配置 ssh —— ubuntu
  • eCAP超声波测距-ePWM电机调速
  • 【K8s】Kubernetes 词汇表
  • 高级java每日一道面试题-2024年10月20日-数据库篇[Redis篇]-Redis为什么是单线程的?
  • SW-LIMS在化妆品行业稳定性试验中的应用
  • vue 项目i18n国际化,快速抽离中文,快速翻译
  • java--多态(详解)
  • windows DLL技术-DLL概述
  • C++ —— 实现一个日期类
  • Java全栈经典面试题剖析5】JavaSE高级 -- 集合
  • python中如何获取对象信息
  • 逐行讲解transformers中model.generate()源码
  • 小白对时序数据库的理解
  • 打开游戏提示丢失(或找不到)XINPUT1_3.DLL的多种解决办法
  • netty的网络IO模型
  • 电子木鱼小游戏小程序源码系统 带完整的安装代码包以及搭建部署教程
  • 支付域——交易系统设计
  • IBus 和 Fcitx 框架下的rime输入法引擎
  • Java基础-JVM