当前位置: 首页 > news >正文

NVIDIA Jetson支持的神经网络加速的量化平台

NVIDIA Jetson支持的神经网络加速的量化工具、技术

NVIDIA Jetson 是专为边缘计算和嵌入式系统设计的高性能计算平台,它支持多种深度学习模型的部署和推理。对于神经网络加速的量化平台,Jetson 支持以下技术和工具:

  1. TensorRT:TensorRT 是 NVIDIA 提供的一个深度学习推理优化器和运行时库,它支持各种 GPU 加速器,包括 Jetson 系列。TensorRT 可以对深度学习模型进行优化,包括层融合、精度降低(如从 FP32 到 INT8)等,以提高推理速度和降低内存占用。TensorRT 支持量化感知训练(QAT)和训练后量化(PTQ),以实现模型的高效部署。

  2. jetson-inference:这是一个开源项目,为 NVIDIA Jetson 设备提供了深度学习推理和实时视觉的 DNN 库。它使用 TensorRT 在 GPU 上运行优化的网络,支持 C++ 和 Python 编程,并使用 PyTorch 进行模型训练。

  3. Deep Learning Accelerator (DLA):NVIDIA Jetson Orin 等平台包含第二代 DLA,这是一个专用的深度学习推理引擎,可以提供显著的 AI 算力。DLA 支持量化感知训练(QAT)和训练后量化(PTQ),以实现在 DLA 上的高效推理。

  4. cuDNN:CUDA 深度神经网络库(cuDNN)是 NVIDIA 提供的一个原语库,用于在 GPU 上加速深度神经网络。它支持多种深度学习框架,如 TensorFlow、Caffe、PyTorch 等,并且可以通过 cuDNN 进行模型的优化和加速。

  5. PyTorch Quantization:NVIDIA 还提供了 PyTorch 量化工具包,用于量化 PyTorch 模型。这个工具包支持量化感知训练和后训练量化,可以帮助开发者在 Jetson 平台上部署量化模型。

  6. PPQ:由商汤 HPC 团队开发的量化框架 PPQ,支持多个硬件后端平台的量化模拟与部署,并在此基础上抽象出一套完整的量化框架设计。

使用这些工具和平台,开发者可以在 Jetson 设备上进行神经网络的量化模拟、训练、优化和部署,以实现高效的深度学习推理。

多个硬件后端平台?

"多个硬件后端平台"指的是PPQ量化框架支持在多种不同的硬件和计算平台上进行量化模拟和部署。这些平台包括但不限于:

  1. GPU:如NVIDIA的TensorRT,支持在GPU上进行高效的推理加速。
  2. Vitis AI:Xilinx提供的用于FPGA的AI推理优化工具。
  3. DSP:数字信号处理器,常用于音频和通信领域的信号处理。
  4. NNIE:华为提供的Neural Network Inference Engine,用于其Ascend AI处理器。
  5. TVM:一个开源的机器学习编译器框架,可以跨多种硬件后端部署模型。
  6. OpenVINO:英特尔提供的跨架构的深度学习部署工具套件。
  7. Tengine:一个轻量级的推理引擎,支持多种硬件平台。
  8. SNPE:高通提供的用于其骁龙处理器的神经网络处理引擎。
  9. GraphCore:用于GraphCore智能处理单元(IPU)的推理引擎。
  10. Metax:用于MediaTek APU(AI处理器)的推理引擎。

PPQ通过支持这些不同的硬件后端平台,使得开发者可以在多种硬件上进行模型的量化和部署,从而实现跨平台的模型优化和推理加速。PPQ的这种灵活性和可扩展性,使其成为一个强大的工具,可以帮助开发者在不同的硬件平台上实现高效的AI模型部署。

http://www.lryc.cn/news/465737.html

相关文章:

  • MySQL 免密登录的几种配置方式
  • html全局属性、框架标签
  • ARL 灯塔 | CentOS7 — ARL 灯塔搭建流程(Docker)
  • 抖音列表页采集-前言
  • Linux 端口占用 kill被占用的端口 杀掉端口
  • 爬虫之数据解析
  • 本地缓存少更改、小数据、低一致表的思考
  • redis 使用
  • 使用 Pake 一键打包网页为桌面应用 / 客户端
  • vue.js【常用UI组件库】
  • 基于vue框架的的地铁站智慧管理系统的设计n09jb(程序+源码+数据库+调试部署+开发环境)系统界面在最后面。
  • 《南京师大学报(自然科学版)》
  • 考研读研生存指南,注意事项
  • 爬虫结合项目实战
  • 【Next.js 项目实战系列】07-分配 Issue 给用户
  • Web,RESTful API 在微服务中的作用是什么?
  • Ajax:跨域、防抖和节流、HTTP协议
  • 数据结构(8.2_2)—希尔排序
  • Netty笔记
  • 管道燃气监管系统
  • Python语法结构(三)(Python Syntax Structure III)
  • 08_Linux文件查找技巧:locate、find 和 grep 命令详解
  • JAVA 实验六
  • 电脑查不到IP地址是什么原因?怎么解决
  • Axure重要元件三——中继器修改数据
  • 应用层——电子邮件、MIME、简单网络管理协议SNMP
  • 我与C语言二周目邂逅vlog——8.编译和链接
  • Views Page 视图页面
  • Win10 IDEA远程连接HBase
  • 1.centos 镜像