【CCPC】The 2021 CCPC Guilin Onsite (XXII Open Cup, Grand Prix of EDG) K
Tax
#图论 #最短路 #搜索 #暴力
题目描述
JB received his driver’s license recently. To celebrate this fact, JB decides to drive to other cities in Byteland. There are n n n cities and m m m bidirectional roads in Byteland, labeled by 1 , 2 , … , n 1,2,\dots,n 1,2,…,n. JB is at the 1 1 1-st city, and he can only drive on these m m m roads. It is always possible for JB to reach every city in Byteland.
The length of each road is the same, but they are controlled by different engineering companies. For the i i i-th edge, it is controlled by the c i c_i ci-th company. If it is the k k k-th time JB drives on an edge controlled by the t t t-th company, JB needs to pay k × w t k\times w_t k×wt dollars for tax.
JB is selecting his destination city. Assume the destination is the k k k-th city, he will drive from city 1 1 1 to city k k k along the shortest path, and minimize the total tax when there are multiple shortest paths. Please write a program to help JB calculate the minimum number of dollars he needs to pay for each possible destination.
输入格式
The input contains only a single case.
The first line of the input contains two integers n n n and m m m ( 2 ≤ n ≤ 50 2 \leq n\leq 50 2≤n≤50, n − 1 ≤ m ≤ n ( n − 1 ) 2 n-1\leq m \leq \frac{n(n-1)}{2} n−1≤m≤2n(n−1)), denoting the number of cities and the number of bidirectional roads.
The second line contains m m m integers w 1 , w 2 , … , w m w_1,w_2,\dots,w_m w1,w2,…,wm ( 1 ≤ w i ≤ 10 000 1\leq w_i\leq 10\,000 1≤wi≤10000), denoting the base tax of each company.
In the next m m m lines, the i i i-th line ( 1 ≤ i ≤ m ) (1 \le i \le m) (1≤i≤m) contains three integers u i , v i u_i,v_i ui,vi and c i c_i ci ( 1 ≤ u i , v i ≤ n 1\leq u_i,v_i\leq n 1≤ui,vi≤n, u i ≠ v i u_i\neq v_i ui=vi, 1 ≤ c i ≤ m 1\leq c_i\leq m 1≤ci≤m), denoting denoting an bidirectional road between the u i u_i ui-th city and the v i v_i vi-th city, controlled by the c i c_i ci-th company.
It is guaranteed that there are at most one road between a pair of city, and it is always possible for JB to drive to every other city.
输出格式
Print n − 1 n-1 n−1 lines, the k k k-th ( 1 ≤ k ≤ n − 1 1\leq k\leq n-1 1≤k≤n−1) of which containing an integer, denoting the minimum number of dollars JB needs to pay when the destination is the ( k + 1 ) (k+1) (k+1)-th city.
样例 #1
样例输入 #1
5 6
1 8 2 1 3 9
1 2 1
2 3 2
1 4 1
3 4 6
3 5 4
4 5 1
样例输出 #1
1
9
1
3
解法
首先图只有 n ≤ 50 n\leq 50 n≤50,并且每条边的权值都为 1 1 1,那么我们可以使用 b f s bfs bfs或者 f l o y e d floyed floyed 求出 1 1 1号点到其他任何点的最短路径。
然后就可以枚举所有的合法的最短路径了, 由于图很小,所以直接大力 d f s dfs dfs 搜索所有可能的情况,维护最小值即可。
代码(floyed)
void solve() {int n, m;std::cin >> n >> m;std::vector<int>w(m + 1);for (int i = 1; i <= m; ++i) {std::cin >> w[i];}std::vector<std::vector<int>>dis(n + 1, std::vector<int>(n + 1, inf));std::vector<std::vector<pii>>e(n + 1);for (int i = 1; i <= m; ++i) {int u, v, c;std::cin >> u >> v >> c;e[u].push_back({ v,c });e[v].push_back({ u,c });dis[u][v] = dis[v][u] = 1;}auto floyed = [&]() {for (int i = 1; i <= n; ++i) {dis[i][i] = 0;}for (int k = 1; k <= n; ++k) {for (int i = 1; i <= n; ++i) {for (int j = 1; j <= n; ++j) {dis[i][j] = std::min(dis[i][j], dis[i][k] + dis[k][j]);}}}};floyed();std::vector<int>cnt(m + 1);std::vector<int>d(n + 1, inf);auto dfs = [&](auto&& self, int u, int sum)->void {d[u] = std::min(d[u], sum);for (auto& [v, c] : e[u]) {if (dis[1][u] + 1 == dis[1][v]) {cnt[c]++;self(self, v, sum + cnt[c] * w[c]);cnt[c]--;}}};dfs(dfs, 1, 0);for (int i = 2; i <= n; ++i) {std::cout << d[i] << "\n";}}signed main() {std::ios::sync_with_stdio(0);std::cin.tie(0);std::cout.tie(0);int t = 1;//std::cin >> t;while (t--) {solve();}return 0;
}
代码(bfs)
void solve() {int n,m;std::cin >> n>>m;std::vector<int>w(m + 1);for (int i = 1; i <= m; ++i) {std::cin >> w[i];}std::vector<std::vector<pii>>e(n + 1);for (int i = 1; i <= m; ++i) {int u, v, c;std::cin >> u >> v >> c;e[u].push_back({ v,c });e[v].push_back({ u,c });}std::vector<bool> vis(n + 1);std::vector<int>dis(n + 1);auto bfs = [&]() {std::queue<pii>q;q.push({ 1,0 }); vis[1] = 1;while (q.size()) {auto [u, d] = q.front(); q.pop();for (auto& [v, c] : e[u]) {if (vis[v]) continue;dis[v] = dis[u] + 1;q.push({ v,dis[v] });vis[v] = 1;}}};bfs();std::vector<int>cnt(m + 1);std::vector<int>d(n + 1, inf);auto dfs = [&](auto &&self ,int u,int sum)->void {d[u] = std::min(d[u], sum);for (auto& [v, c] : e[u]) {if (dis[u] + 1 == dis[v]) {cnt[c]++;self(self, v, sum + cnt[c] * w[c]);cnt[c]--;}}};dfs(dfs, 1, 0);for (int i = 2; i <= n; ++i) {std::cout << d[i] << "\n";}}signed main() {std::ios::sync_with_stdio(0);std::cin.tie(0);std::cout.tie(0);int t = 1;//std::cin >> t;while (t--) {solve();}return 0;
}