当前位置: 首页 > news >正文

澳鹏干货 | 大语言模型的上下文窗口 (Context Windows)

大语言模型(LLMs)极大地提升了人工智能在理解和生成文本方面的能力。其中一个影响其效用的重要方面是“上下文窗口”(Context Windows)—— 这个概念直接影响着模型接收和生成语言的有效性。

本期澳鹏干货将深入探讨上下文窗口对人工智能模型应用的影响,及引入检索增强生成(RAG)方法的重要性。

什么是上下文窗口

在大语言模型领域,上下文窗口(Context Windows)是指模型在生成或理解语言时可以接收的文本量,或模型可以处理的token数,在确保模型做出连贯且与上下文相关的响应或分析方面至关重要。

上下文窗口的大小直接影响模型在处理信息时可以利用的前后文信息或生成回复时的token数量。

图片

在大模型中,一个token可以是一个汉字/字母、一个词或一个标点符号,因此上下文窗口表示模型在一次输入中可以处理的最大字符数或词数。

在任何时候,输入和输出的token总数不能超过上下文窗口的最大长度限制,例如gpt-3.5-turbo-instruct模型最大上下文窗口的长度是4,096个tokens。

而GPT-4o的上下文窗口可以达到128,000个tokens,国产大模型KIMI更是达到了200万的tokens。这使得大模型可以在单次交互中处理和生成更长、更复杂的文本。

图片

对AI模型应用的影响

上下文窗口大小对于需要深入理解长文本或生成大量内容的AI应用至关重要。较大的上下文窗口能够产生更细致和连贯的输出,因为模型在响应之前可以考虑到更多的信息。这对于文档摘要、内容创作和复杂的问答系统尤其重要。

图片

长上下文窗口的作用包括:

理解上下文:较大的上下文窗口可以帮助模型更好地理解用户输入的上下文,从而生成更相关和连贯的响应。例如在对话中,模型可以参考更早的对话内容,以提供更准确的回答。

生成长文本:在生成长篇文章、故事或报告时,较大的上下文窗口允许模型保持连贯性和一致性,以避免在较长的文本中出现前后矛盾的情况。

复杂任务处理:对于复杂的任务,如代码生成、论文写作、长篇问答等,较大的上下文窗口能让模型处理更多的信息,从而提高完成任务的质量和准确性。

图片

然而,较大的上下文窗口需要更多的计算能力和内存,这在性能和资源效率之间形成了一种权衡。因此,部署大语言模型的企业需要根据其特定需求和限制来平衡这些因素。

RAG + 人类 = 更高性能的AI

在上下文窗口中,检索增强生成(RAG)概念引入了一种创新方法来扩展模型处理信息的能力。

RAG模型将大语言模型的生成能力与动态检索外部文档的实时能力相结合。这意味着,即使模型的直接上下文窗口有限,也可以在生成过程中通过外部来源引入相关数据来访问上下文信息,然后将相关信息块作为上下文提供给大语言模型。

这种方法显著提升了模型产生准确、有根据且上下文丰富的响应的能力,特别是在答案可能取决于内部知识库内容的场景中。

RAG(Retrieval Augmented Generation / 检索增强生成)巧妙融合了检索式模型的精准和生成模型的创造力,不仅能理解问题,还能在海量数据中找到针对性的答案,并用人类的语言告诉你。

通过人工监督,可以纠正数据中的错误,并确保检索到的信息相关性,从而为模型开发提供更准确、更符合应用场景的响应。人工反馈还可以实现自适应学习,使模型能够动态调整以适应复杂的数据场景,并通过持续迭代不断改进。

上下文窗口的有效使用

应用需求

上下文窗口大小的选择应与人工智能应用的需求相一致。对于RAG架构,这包括考虑给定数量标记块的数量,作为提供给模型的上下文。

运营成本

较大的上下文窗口和添加RAG机制会增加计算负载。企业需要考虑可用资源,并优化模型架构或为模型匹配合适的窗口大小和检索能力。

模型训练和微调

用上下文窗口训练大语言模型需要大量资源。然而,用特定领域的数据和强大的RAG知识库来优化这些模型可以提高性能并优化上下文的使用。澳鹏Appen专注于在效率和成本之间实现这种平衡。

模型的上下文窗口是大语言模型设计和部署的关键方面。检索增强生成 (RAG) 的引入进一步扩展了大语言模型的潜力,使模型能够搜集并整合更广泛、有效的信息。

随着企业持续探索AI应用前沿,理解和优化上下文窗口的使用和检索机制对于开发更复杂的AI应用至关重要。澳鹏Appen提供训练和微调这些模型所需的高质量数据和专业知识,确保它们能够满足人工智能应用不断变化的各种需求。

http://www.lryc.cn/news/461847.html

相关文章:

  • 为什么k8s不支持docker-kubernetes
  • 数据结构编程实践20讲(Python版)—17散列
  • 看了大厂用AI审简历,我才发现社会的残酷真相!今年的秋招太可怕了
  • 京东大模型革命电商搜推技术:挑战、实践与未来趋势
  • 深入学习二叉树(BinaryTree)(纯小白进)
  • 诗风秦韵诗词学习画廊宣言
  • Cannot determine local hostname
  • 电工课堂-对晶闸管移相控制触发要求
  • 基于Arduino做的“鱿鱼游戏”BOSS面具,支持动作检测
  • 数据库的查询操作
  • WebGL编程指南 - WebGL概述
  • 前端杂学录(十)
  • C++上机|编写函数invert实现对一维数组的倒序
  • 使用LSPatch+PlusNE修改手机软件
  • 基于springboot的4S店车辆管理系统
  • C++从入门到起飞之——(multi)set与(multi)map的的使用 全方位剖析!
  • HTML5实现古典音乐网站源码模板2
  • 基于SpringBoot+Vue+uniapp的诗词学习系统的详细设计和实现
  • 基于SpringBoot网上超市的设计与实现(论文+源码)_kaic
  • 《webpack深入浅出系列》
  • 云服务器使用挂载的数据盘空间(自用)
  • snmp usm OID
  • 数据仓库分层设计概念
  • 【HTML】defer 和 async 属性在 script 标签中分别有什么作用?
  • 扫视扫描路径预测的评估:主观评估数 据库和基于循环神经网络的度量 记录
  • 【Java数据结构】优先级队列(堆)
  • 图书个性化推荐系统|基于springBoot的图书个性化推荐系统设计与实现(附项目源码+论文+数据库)
  • 通用车牌正则校验
  • 使用 SSH 连接 GitLab 的常见问题及解决方案
  • 泛微E9开发 校验日期型字段是否符合要求