当前位置: 首页 > news >正文

各种排序方法总结

目录

1. 冒泡排序 (Bubble Sort

2. 选择排序 (Selection Sort)

3. 插入排序 (Insertion Sort)

4. 快速排序 (Quick Sort)

5. 归并排序 (Merge Sort)

6. 堆排序 (Heap Sort)


排序算法 时间复杂度 空间复杂度 备注
冒泡排序 最好情况: O(n)
平均情况: O(n^2)
最坏情况: O(n^2)
 O(1)  原地排序,只需常量级额外空间
选择排序

最好情况: O(n^2)

平均情况: O(n^2)
最坏情况: O(n^2)

 O(1) 原地排序,只需常量级额外空间
插入排序最好情况: O(n)
平均情况: O(n^2)
最坏情况: O(n^2)
 O(1) 原地排序,只需常量级额外空间
快速排序最好情况: O(n log n)
平均情况: O(n log n)
最坏情况: O(n^2
O(log n) 递归调用栈空间,最好情况O(log n),最坏情况O(n),但平均情况为O(log n)
归并排序最好情况:O(n log n)
平均情况: O(n log n)
最坏情况: O(n log n)
 O(n)  需要额外的临时数组来存储合并结果
堆排序最好情况: O(n log n)
平均情况: O(n log n)
最坏情况: O(n log n)
O(1)  原地排序,堆的调整过程在数组内部进行,只需常量级额外空间(不考虑递归实现,若考虑递归则与快速排序类似)

1. 冒泡排序 (Bubble Sort

时间复杂度:

  • 最好情况: O(n)
  • 平均情况: O(n^2)
  • 最坏情况: O(n^2)
function bubbleSort(arr) {  let n = arr.length;  for (let i = 0; i < n - 1; i++) {  for (let j = 0; j < n - 1 - i; j++) {  if (arr[j] > arr[j + 1]) {  // 交换元素  [arr[j], arr[j + 1]] = [arr[j + 1], arr[j]];  }  }  }  return arr;  
}

2. 选择排序 (Selection Sort)

原理:

选择排序是一种简单直观的排序算法。它的工作原理是首先在未排序序列中找到最小(或最大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(或最大)元素,然后放到已排序序列的末尾。以此类推,直到所有元素均排序完毕。

具体步骤如下:

  1. 从未排序序列中找到最小(或最大)元素,存放到排序序列的起始位置。
  2. 再从剩余未排序元素中继续寻找最小(或最大)元素,放到已排序序列的末尾。
  3. 重复第二步,直到所有元素均排序完毕。

特点:

  • 选择排序的时间复杂度为O(n^2),其中n是待排序元素的数量。
  • 选择排序是一种原地排序算法,因为它只需要一个额外的空间来存储当前找到的最小(或最大)元素。
  • 选择排序不是稳定的排序算法,因为相同元素的相对位置可能会在排序过程中发生改变。

时间复杂度:

  • 最好情况: O(n^2)
  • 平均情况: O(n^2)
  • 最坏情况: O(n^2)
function selectionSort(arr) {  let n = arr.length;  for (let i = 0; i < n - 1; i++) {  let minIndex = i;  for (let j = i + 1; j < n; j++) {  if (arr[j] < arr[minIndex]) {  minIndex = j;  }  }  // 交换元素  [arr[i], arr[minIndex]] = [arr[minIndex], arr[i]];  }  return arr;  
}

3. 插入排序 (Insertion Sort)

原理:

插入排序的工作方式是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。插入排序在实现上,通常采用in-place排序(即只需用到O(1)的额外空间的排序),因而在从后向前扫描过程中,找到相应位置并插入时,不需要移动元素,只需将要插入的元素移动到插入点即可。

具体步骤如下:

  1. 从第一个元素开始,该元素可以认为已经被排序。
  2. 取出下一个元素,在已经排序的元素序列中从后向前扫描。
  3. 如果该元素(已排序)大于新元素,则将该元素移到下一位置。
  4. 重复步骤3,直到找到已排序的元素小于或者等于新元素的位置。
  5. 将新元素插入到该位置后。
  6. 重复步骤2~5,直到所有元素均排序完毕。

特点:

  • 插入排序的时间复杂度为O(n^2),在数据规模较小时表现良好,特别是当数据基本有序时,时间复杂度可以接近O(n)。
  • 插入排序是一种原地排序算法,因为它只需要一个额外的空间来存储当前正在插入的元素。
  • 插入排序是稳定的排序算法,因为相同元素的相对位置在排序过程中不会发生改变。

时间复杂度:

  • 最好情况: O(n)
  • 平均情况: O(n^2)
  • 最坏情况: O(n^2)
function insertionSort(arr) {  let n = arr.length;  for (let i = 1; i < n; i++) {  let key = arr[i];  let j = i - 1;  while (j >= 0 && arr[j] > key) {  arr[j + 1] = arr[j];  j = j - 1;  }  arr[j + 1] = key;  }  return arr;  
}

4. 快速排序 (Quick Sort)

原理:

快速排序是一种通过基准划分区块,再不断交换左右项的排序方式。它采用了分治法,减少了交换的次数。快速排序的基本思想是:通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归或迭代进行,以此让整个数列变成有序序列。

具体步骤如下:

  1. 在待排序区间找到一个基准点(pivot),一般选择数组的第一个元素、最后一个元素或者随机选择一个元素。
  2. 逐个循环数组,将小于基准的项放在左侧,将大于基准的项放在右侧。一般通过交换的方式来实现。
  3. 对基准点左侧全部项和基点右侧全部项分别通过递归(或迭代)方式重复上述步骤,直到所有数组都交换完成。

时间复杂度:

  • 最好情况: O(n log n)
  • 平均情况: O(n log n)
  • 最坏情况: O(n^2) (但可以通过随机化选择基准元素等方法优化)
function quickSort(arr) {  if (arr.length <= 1) {  return arr;  }  let pivot = arr[Math.floor(arr.length / 2)];  let left = [];  let right = [];  for (let i = 0; i < arr.length; i++) {  if (i === Math.floor(arr.length / 2)) continue;  if (arr[i] < pivot) {  left.push(arr[i]);  } else {  right.push(arr[i]);  }  }  return [...quickSort(left), pivot, ...quickSort(right)];  
}

5. 归并排序 (Merge Sort)

原理:

归并排序是一种分治算法,其工作原理是将未排序的列表划分为n个子列表,每个子列表包含一个元素(包含一个元素的列表被认为是有序的),然后重复合并子列表以生成新的有序子列表,直到只剩下一个子列表。
具体步骤如下:

  1. 分解:将待排序的n个元素的序列分成两个子序列,每个子序列包含n/2个元素。
  2. 解决:使用归并排序递归地排序两个子序列。
  3. 合并:将两个已排序的子序列合并成一个最终的排序序列。

时间复杂度:

  • 最好情况: O(n log n)
  • 平均情况: O(n log n)
  • 最坏情况: O(n log n)
function mergeSort(arr) {  if (arr.length <= 1) {  return arr;  }  const middle = Math.floor(arr.length / 2);  const left = arr.slice(0, middle);  const right = arr.slice(middle);  return merge(mergeSort(left), mergeSort(right));  
}  function merge(left, right) {  let result = [];  let leftIndex = 0;  let rightIndex = 0;  while (leftIndex < left.length && rightIndex < right.length) {  if (left[leftIndex] < right[rightIndex]) {  result.push(left[leftIndex]);  leftIndex++;  } else {  result.push(right[rightIndex]);  rightIndex++;  }  }  return result.concat(left.slice(leftIndex)).concat(right.slice(rightIndex));  
}

6. 堆排序 (Heap Sort)

堆排序(Heap Sort)是一种基于堆(Heap)这种数据结构的比较排序算法。堆是一个近似完全二叉树的结构,分为最大堆(Max Heap)和最小堆(Min Heap)。在最大堆中,每个节点的值都大于或等于其子节点的值;在最小堆中,每个节点的值都小于或等于其子节点的值。堆排序通常使用最大堆来实现升序排序

堆排序原理:

  1. 构建最大堆:
  • 将数组看作一个完全二叉树,构建最大堆。
  • 从最后一个非叶子节点开始,向上依次调整堆,使得每个子树都满足最大堆的性质。

     2.堆排序过程:

  • 将堆顶元素(最大值)与堆的最后一个元素交换。
  • 堆的大小减1,重新调整堆顶元素所在的子树,使其满足最大堆的性质。
  • 重复上述步骤,直到堆的大小为1。

时间复杂度:

  • 最好情况: O(n log n)
  • 平均情况: O(n log n)
  • 最坏情况: O(n log n)
function heapSort(arr) {  let n = arr.length;  // 构建最大堆  for (let i = Math.floor(n / 2) - 1; i >= 0; i--) {  heapify(arr, n, i);  }  // 一个个从堆顶取出元素  for (let i = n - 1; i > 0; i--) {  // 交换当前堆顶(最大值)和最后一个元素  [arr[0], arr[i]] = [arr[i], arr[0]];  // 重新调整堆  heapify(arr, i, 0);  }  return arr;  
}  function heapify(arr, n, i) {  let largest = i;  //最大子节点let left = 2 * i + 1;  //左子节点let right = 2 * i + 2;  //右子节点//如果左子节点存在且大于当前最大子节点if (left < n && arr[left] > arr[largest]) {  largest = left;  }  //如果右子节点存在且大于当前最大子节点if (right < n && arr[right] > arr[largest]) {  largest = right;  }  //如果最大值不是当前子节点,则交换 if (largest !== i) {  [arr[i], arr[largest]] = [arr[largest], arr[i]];  heapify(arr, n, largest);  }  
}

http://www.lryc.cn/news/461742.html

相关文章:

  • 【工欲善其事】巧用 PowerShell 自动清除复制 PDF 文本时夹杂的换行符号
  • Maven与Gradle的区别
  • 【linux 多进程并发】0202 Linux进程fork之后父子进程间的文件操作有着相同的偏移记录,多进程操作文件的方法
  • SQLite在安卓中的应用
  • Python数据库操作
  • 交叉熵损失函数为代表的两层神经网络的反向传播量化求导计算公式
  • 数据结构——八大排序(上)
  • vxe-table 导入导出功能全解析
  • 常用STL的操作以及特点
  • 025 elasticsearch索引管理-Java原生客户端
  • Gin框架操作指南10:服务器与高级功能
  • AIGC技术的学习 系列一
  • Milvus×Dify半小时轻松构建RAG系统
  • wireshark 解密浏览器https数据包
  • 【HTML】构建网页的基石
  • rust不允许在全局区定义普通变量!
  • 量化投资中的数据驱动决策:大数据如何改变金融市场
  • MySQL 设计数据表
  • 【大数据技术基础 | 实验一】配置SSH免密登录
  • 地级市碳排放效率测算2006-2021年
  • 周易解读:四象
  • Java设计模式梳理:行为型模式(策略,观察者等)
  • 【MySQL】入门篇—基本数据类型:使用LIMIT限制结果集
  • PostgreSQL与MySQL在语法上的区别
  • frameworks 之InputDispatcher
  • ESP32-IDF GPIO 专题
  • 深度学习代码学习笔记2
  • 016集——c# 实现CAD类库 与窗体的交互(CAD—C#二次开发入门)
  • 【亲测可行】最新ubuntu搭建rknn-toolkit2
  • pico+Unity交互开发——触碰抓取