当前位置: 首页 > news >正文

【数据结构笔记】搜索树

二叉搜索树

任一节点x的左/右子树中,所有非空节点均不大于(不小于)x

  • 必须是所有的非空节点,仅左右孩子不够(左孩子的右孩子可能很大)
  • 一棵二叉树是二叉搜索树当且仅当中序遍历序列是单调非降序列

两棵二叉搜索树等价当且仅当他们有相同的中序遍历序列(上下可变,左右不乱)

  • 换言之,构成两棵二叉搜索树的元素相同

等价变换zig、zag

  • zig:右单旋转
  • zag:左单旋转

变换后仍保持二叉搜索树的性质

(《算法导论》练习13.2-2)在任何一棵有n个结点的二叉搜索树中,恰有n-1种可能的旋转。

度为2的节点有2种转法,度为1的节点有1种转法,从而每种旋转对应一条边,共n-1条边。

(《算法导论》练习13.2-4)任何一棵含n个结点的二叉搜索树可以通过O(n)次旋转,转变为其他任何一棵含n个结点的二叉搜索树。

对于任何含n个结点的二叉搜索树,若某节点有左孩子,就右旋,如此会消除一个左孩子-父节点关系,而最多只有n-1个上述的左孩子-父节点关系,从而经至多n-1次旋转就能将其变为一条右链,而左右旋都是可逆的,转变只需要以该右链作为中介。

【2014-THU-Fin】由同一组共n个词条构成的任意两棵BST,经O(logn)次zig和zag旋转之后,必可相互转换。(×)

搜索

中序遍历操作

内部变量_hot指向搜索的终止位置的父节点

  • 如果命中,就是目标节点的父节点
  • 如果未命中,就是目标节点如果存在时的父节点

API返回搜索的终止位置

  • 如果命中,就是目标节点
  • 如果未命中,就是_hot的子哨兵节点

时间复杂度O(h)

插入

先搜索,让_hot指向将增加孩子的节点,再添加子节点

从插入的节点开始,向上更新节点高度

时间复杂度O(h)

删除

单子节点删除

直接把删除节点换成其以子唯一节点为根的子树

删除时利用搜索接口确定节点位置的过程给出当前_hot,它是向上更新节点高度的起点

双子节点删除

用在右子树中的直接后继替换删除节点,原来直接后继是度不为2的节点,化为单子节点删除

_hot设为原来直接后继的父节点,它是向上更新节点高度的起点

/******************************************************************************************
* BST节点删除算法:初除位置x所指癿节点(全局静态模板函数,适用亍AVL、Splay、RedBlack等各种BST)
* 目标x在此前经查找定位,并确认非NULL,故必删除成功;与searchIn不同,调用之前不必将hot置空
* 返回值指向实际被删除节点的接替者,hot指向实际被删除节点的父亲——二者均有可能是NULL
******************************************************************************************/
template <typename T>
static BinNodePosi(T) removeAt (BinNodePosi(T)& x, BinNodePosi(T)& hot) {BinNodePosi(T) w = x; //实际被摘除的节点,初值同xBinNodePosi(T) succ = NULL; //实际被删除节点的接替者if (!HasLChild(*x)) { //若*x的左子树为空,则可succ = x = x->rc; //直接将*x替换为其右子树}else if (!HasRChild(*x)){ //若右子树为空,则可succ = x = x->lc; //对称地处理——注意:此时succ != NULL}else { //若左右子树均存在,则选择x的直接后继作为实际被摘除节点,为此需要w = w->succ(); //(在右子树中)找到*x的直接后继*wswap(x->data, w->data); //交换*x和*w的数据元素BinNodePosi(T) u = w->parent;succ = w->rc; //w一定无左孩子,化为单节点的仅有右孩子情形((u == x) ? u->rc : u->lc) = succ;//如果u是x,即x是w的父节点,此时w在u的右子树中//若不然,因w是x的直接后继,此时w在u的左子树中}hot = w->parent; //记录实际被删除节点的父亲if (succ) {succ->parent = hot; //并将被删除节点的接替者与hot相联}release(w->data);release(w);return succ; //释放被摘除节点,返回接替者
} //release()负责释放复杂结构,与算法无直接关系,见代码包

 时间复杂度O(h)

平衡二叉搜索树

理想平衡树:n个节点,树高为⌊log_2n⌋的二叉树

适度平衡:n个节点,树高为渐进O(logn)的二叉树

  • 经过单次修改操作,最多只有O(logn)处不再满足适度平衡性条件
  • 可在O(logn)时间内,使这些不适度平衡处重新适度平衡

AVL树

节点v的平衡因子balFac(v) = height(lc(v)) - height(rc(v))

AVL条件:AVL树中所有节点满足|balFac(v)| <= 1

高度为h的AVL树至少含fib(h+3)-1个节点,进而n个节点的AVL树树高是O(logn)的。

【2012-THU-Fin】将[1481,1992]区间内的整数逐一插入到空AVL树中,最后该AVL树的高度是(CD)
A.7 
B.8 
C.9 
D.10 
E.以上都不对
共512=2^9个元素,至少为9。fib(13)-1=232,也可能是10。

失衡与重平衡

记UT(x)是因对节点x的操作而不满足AVL条件的节点集,下假设调整前UT(x)非空

插入失衡

UT(x)中的元素都是x的祖先,其不低于x的祖父节点,且可能一直失衡到根节点

重平衡自下而上逐个修正

右旋转

左旋转

左-右旋转

右-左旋转

  • 如果节点g的X孩子的Y子树插入导致的失衡
    • X=Y,在g做X旋转
    • X!=Y,先在X孩子做X旋转,再在g做Y旋转
  • 如果插入导致了旋转调整,那么本次插入不改变树高

每种旋转都是就地O(1)时间复杂度算法,每次将消除一个节点的失衡,而AVL树树高是O(logn)的,即最多O(logn)次旋转,时间复杂度共计O(logn)

删除失衡

UT(x)只有1个节点,但可能出现节点的替换(自下而上的失衡传播);任何进入UT(x)的节点失衡前后高度不变(要是失衡了,删除部分来自更低的部分,但高度取决于更高的子树)

删除导致的旋转调整不保证不改变树高,树高可能降低

时间复杂度O(logn)

“3+4”平衡重构

单次重构为就地O(1)时间复杂度算法(不计更新高度)

【2014-THU-Fin】设在某新节点插入AVL树后(尚待平衡化时),最低失衡节点为g。若此时g的左、右孩子的平衡因子分别为-1和0,则应通过(C)旋转使之重新恢复平衡。 
A.zig 
B.zig+zag 
C.zag+zig 
D.zag 
E.不确定 

【2016-THU-Fin】若AVL树插入元素的过程中发生了旋转操作,则树高必不变。(√)

【2016-THU-Fin】如果元素理想随机,那么对二叉搜索树做平衡化处理,对改进其渐进时间复杂度并没有什么实质的作用。(×)

伸展树

红黑树

B树

http://www.lryc.cn/news/459154.html

相关文章:

  • 如何使用UART(STM32 HAL库)
  • 星巴克英语
  • 权重衰减与暂退法——paddle部分
  • golang获取当天最小的时间,以DateTime的string格式返回
  • 2025 - 中医学基础 - 考研 - 职称
  • Pandas库
  • Qt网络编程: 构建高效的HTTP文件下载器
  • Python 将Word, Excel, PDF和PPT文档转换为OFD格式
  • QD1-P21-P22 CSS 基础语法、注释、使用方法
  • 您是否也在寻找免费的 PDF 编辑器工具?10个备选PDF 编辑器工具
  • C++调试方法(Vscode)(一) ——本地调试
  • C语言 | Leetcode C语言题解之第460题LFU缓存
  • 【AI论文精读12】RAG论文综述2(微软亚研院 2409)P4-隐性事实查询L2
  • SpringBoot中间件Docker
  • 计算机毕设选题推荐【大数据专业】
  • Bootstrap 4 多媒体对象
  • Springmvc Thymeleaf 标签
  • 用java来编写web界面
  • 如何利用Fiddler进行抓包并自动化
  • 权重衰减与暂退法——pytorch与paddle实现模型正则化
  • MYSQL-windows安装配置两个或多个版本MYSQL
  • 6、Spring Boot 3.x集成RabbitMQ动态交换机、队列
  • 【分布式微服务云原生】 探索SOAP协议:简单对象访问协议的深度解析与实践
  • C语言题目练习2
  • 复变函数与积分变换——留数定理求拉氏逆变换
  • RabbitMQ事务模块
  • Android终端GB28181音视频实时回传设计探讨
  • AI金融攻防赛:金融场景凭证篡改检测(DataWhale组队学习)
  • 华为OD机试真题---喊7的次数重排
  • 使用阿里巴巴的图