当前位置: 首页 > news >正文

SpringBoot 集成GPT实战,超简单详细

Spring AI 介绍 

在当前的AI应用开发中,像OpenAI这样的GPT服务提供商主要通过HTTP接口提供服务,这导致大部分Java开发者缺乏一种标准化的方式来接入这些强大的语言模型。Spring AI Alibaba应运而生,它作为Spring团队提供的一个解决方案,旨在为Java社区带来一套统一且易于使用的接口标准,以便快速整合包括阿里云通义在内的多种AI能力。借助Spring AI Alibaba,开发者可以更轻松地将GPT等先进技术集成到自己的项目中,同时享受Spring框架带来的诸如依赖注入、自动配置等便利特性,极大简化了从概念验证到生产部署的过程。

Spring AI Alibaba : 集成阿里云最佳时间的spring AI

Spring AI Alibaba 是 Spring AI 的一个实现,专门针对阿里云的百炼系列云产品大模型进行了适配。它旨在为开发者提供基于阿里云通义大模型的聊天、图片生成、语音生成等AI能力。其核心优势在于通过标准化接口简化了不同AI服务提供商之间的迁移工作,使得开发人员仅需更改配置即可轻松切换不同的AI实现。此外,Spring AI Alibaba 支持与Spring Boot的高度集成,让熟悉Spring生态的开发者可以更加便捷地引入强大的AI功能到自己的项目中,无需深入了解底层细节。这不仅提高了开发效率,还确保了应用程序能够以模块化和可移植的方式构建,符合现代微服务架构的设计理念。

基于SpringBoot整合Spring AI alibaba 实现简单聊天

本场景主要是借助spring ai 的能力,整合spring ai alibaba,实现一个最简单的helloworld聊天,主要想要体现spring ai 的流(flux)能力

SpringBoot实战:集成Spring AI Alibaba打造对话模型与prompt流接口

基于SpringBoot集成Spring AI Alibaba来完成一个简单的对话模型,并构建一个支持prompt的流返回接口项目,需要遵循如下步骤:

1. 环境准备

  • JDK版本:确保你的开发环境使用的是JDK 17或更高版本。
  • Spring Boot版本:确认你的Spring Boot版本为3.3.x或以上。

2. 申请API Key

前往阿里云百炼页面,登录您的账号并开通“百炼大模型推理”服务。开通成功后,在个人中心创建一个新的API KEY,并保存好该KEY值,稍后配置时会用到。

3. 配置API KEY

在你的操作系统环境中设置环境变量AI_DASHSCOPE_API_KEY,值为你之前获取的API KEY:

export AI_DASHSCOPE_API_KEY=your_api_key_here

4. 添加依赖和仓库

编辑pom.xml文件,添加对Spring AI Alibaba的支持以及必要的仓库信息:

<repositories><repository><id>sonatype-snapshots</id><url>https://oss.sonatype.org/content/repositories/snapshots</url><snapshots><enabled>true</enabled></snapshots></repository><repository><id>spring-milestones</id><name>Spring Milestones</name><url>https://repo.spring.io/milestone</url><snapshots><enabled>false</enabled></snapshots></repository><repository><id>spring-snapshots</id><name>Spring Snapshots</name><url>https://repo.spring.io/snapshot</url><releases><enabled>false</enabled></releases></repository></repositories><dependencies><dependency><groupId>com.alibaba.cloud.ai</groupId><artifactId>spring-ai-alibaba-starter</artifactId><version>1.0.0-M2</version></dependency><!-- 其他依赖 -->
</dependencies>

5. 创建Spring Boot应用

5.1 Application启动类

保持基本不变,标准的Spring Boot应用程序入口点即可。

5.2 ChatController实现

创建一个控制器ChatController用于处理GET请求,接收用户输入并通过通义千问生成响应流。

import org.springframework.beans.factory.annotation.Value;
import org.springframework.web.bind.annotation.CrossOrigin;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RequestParam;
import org.springframework.web.bind.annotation.RestController;
import reactor.core.publisher.Flux;@RestController
@RequestMapping("/ai")
@CrossOrigin(origins = "*")
public class ChatController {private final ChatClient chatClient;public ChatController(ChatClient.Builder builder) {this.chatClient = builder.build();}@GetMapping("/steamChat")public Flux<String> steamChat(@RequestParam String input) {return this.chatClient.prompt().user(input).stream().content();}
}

这里使用了@CrossOrigin(origins = "*")注解允许跨域请求。

5.3 配置application.properties

将之前设置的API KEY添加至application.properties中:

spring.ai.dashscope.api-key=${AI_DASHSCOPE_API_KEY}

6. 运行与测试

启动你的Spring Boot应用,然后可以通过浏览器或者Postman等工具访问http://localhost:8080/ai/steamChat?input=你的问题来测试接口是否能够正常工作。

解释

上述过程通过引入Spring AI Alibaba的相关依赖,配置了阿里云通义千问所需的API KEY,并定义了一个简单的RESTful API来展示如何利用ChatClient实例进行对话式交互。此示例中的关键在于正确配置了环境变量、依赖关系及安全策略(如CORS),以保证服务能够顺利运行且易于调用。此外,本例还演示了如何利用Flux异步地流式传输聊天响应内容,这对于实时性要求较高的应用场景尤其有用。

搭建React聊天应用:从创建到运行

构建项目并填写代码

首先,创建一个新的 React 应用并安装所需的依赖。这一步骤为你的前端项目搭建好基本的框架。

npx create-react-app frontend
cd frontend
npm install
public/index.html

此文件定义了页面的基本结构,包括标题和一个用于挂载React应用的div元素。

<!DOCTYPE html>
<html lang="en">
<head><meta charset="UTF-8"><meta name="viewport" content="width=device-width, initial-scale=1.0"><title>Chat App</title></head><body><div id="root"></div></body></html>
src/index.js

这里是React应用的入口点,它将根组件App渲染到指定的DOM节点上。

import React from 'react';
import ReactDOM from 'react-dom';
import App from './App';ReactDOM.render(<React.StrictMode><App /></React.StrictMode>,document.getElementById('root')
);
src/App.js

App组件作为顶层组件,负责引入聊天组件ChatComponent,使得整个界面围绕聊天功能展开。

import React from 'react';
import ChatComponent from './components/ChatComponent';function App() {return (<div className="App"><ChatComponent /></div>);
}export default App;
src/components/ChatComponent.js

这是核心的聊天组件,实现了消息输入、发送以及流式接收后端返回的数据。注意这里的fetch请求URL已按照题目要求调整为http://localhost:8080/ai/steamChat?input=${input},并且确保后端服务支持CORS策略以允许跨域请求。

import React, { useState } from 'react';function ChatComponent() {const [input, setInput] = useState('');const [messages, setMessages] = useState('');const handleInputChange = (event) => {setInput(event.target.value);};const handleSendMessage = async () => {try {const response = await fetch(`http://localhost:8080/ai/steamChat?input=${input}`);const reader = response.body.getReader();const decoder = new TextDecoder('utf-8');let done = false;let fullMessage = '';while (!done) {const { value, done: readerDone } = await reader.read();done = readerDone;const chunk = decoder.decode(value, { stream: true });fullMessage += chunk;setMessages((prevMessages) => prevMessages + chunk);}// 在每次请求完成后添加换行符setMessages((prevMessages) => prevMessages + '\n\n=============================\n\n');} catch (error) {console.error('Failed to fetch', error);}};const handleClearMessages = () => {setMessages('');};return (<div><inputtype="text"value={input}onChange={handleInputChange}placeholder="Enter your message"/><button onClick={handleSendMessage}>Send</button><button onClick={handleClearMessages}>Clear</button><div><h3>Messages:</h3><pre>{messages}</pre></div></div>);
}export default ChatComponent;

运行项目

完成上述步骤后,通过下面命令启动你的前端开发服务器,并在浏览器中打开http://localhost:3000查看效果。

cd frontend
npm start

这里构建了一个简单的基于React的应用程序来演示如何与支持Flux流输出的后端服务进行交互。用户可以输入文本并通过点击“Send”按钮发送给后端处理;收到的响应则会实时更新显示于页面之上。此外还提供了一个清除消息记录的功能以便重新开始对话

http://www.lryc.cn/news/458710.html

相关文章:

  • 基于Langchain框架下Prompt工程调教大模型(LLM)[输入输出接口、提示词模板与例子选择器的协同应用
  • Vue基于vue-office实现docx、xlsx、pdf文件的在线预览
  • 哪个软件可以在线编辑ppt? 一口气推荐5个做ppt的得力助手!
  • Django学习笔记九:Django中间件Middleware
  • 原来自媒体高手都是这样选话题的,活该人家赚大钱,真后悔知道晚了
  • 胤娲科技:AI绘梦师——一键复刻梵高《星空》
  • 第18课-C++继承:探索面向对象编程的复用之道
  • 麒麟V10系统下的调试工具(网络和串口调试助手)
  • ssh封装上传下载
  • 018_FEA_Structure_Static_in_Matlab结构静力学分析
  • 网页打不开、找不到服务器IP地址
  • RUM性能优化之图片加载
  • 【Java】—— 泛型:泛型的理解及其在集合(List,Set)、比较器(Comparator)中的使用
  • 【Python】selenium遇到“InvalidArgumentException”的解决方法
  • RT-DETR改进策略:BackBone改进|CAFormer在RT-DETR中的创新应用,显著提升目标检测性能
  • 【YOLOv11】ultralytics最新作品yolov11 AND 模型的训练、推理、验证、导出 以及 使用
  • 动态规划——多状态动态规划问题
  • leetcode-10/9【堆相关】
  • 自然语言处理问答系统:技术进展、应用与挑战
  • 向量数据库!AI 时代的变革者还是泡沫?
  • vue中css作用域及深度作用选择器的用法
  • LLM - 使用 ModelScope SWIFT 测试 Qwen2-VL 的 LoRA 指令微调 教程(2)
  • 2024 年热门前端框架对比及选择指南
  • map_server
  • 无人机航拍视频帧处理与图像拼接算法
  • 搬砖11、Python 文件和异常
  • 24.6 监控系统在采集侧对接运维平台
  • refresh-1
  • 如何写好一篇计算机应用的论文?
  • 工业 5.0 时代的数字孪生:迈向高效和可持续的智能工厂