当前位置: 首页 > news >正文

实用篇—Navicat复制多条INSERT语句,去除ID列执行

在数据库管理中,常常需要将数据从一个表复制到另一个表。使用 Navicat 等工具可以方便地导出多条 INSERT 语句,但有时我们不需要某些列(如 ID 列)。本文将介绍如何在 Navicat 中复制多条 INSERT 语句,并去除 ID 列以便顺利执行。

步骤一:在 Navicat 中复制数据

  1. 选择表:在 Navicat 中,找到需要复制数据的表。
  2. 导出数据:右键点击表名,选择“导出数据”选项,接着选择“SQL 文件”。
  3. 选择导出选项:在导出设置中,确保选择“导出为 INSERT 语句”。

步骤二:打开 SQL 文件

将导出的 SQL 文件打开,可以使用任何文本编辑器,推荐使用 IntelliJ IDEA 或 Notepad++,因为它们支持正则表达式查找和替换功能。

步骤三:使用正则表达式去除 ID 列

1. 打开查找和替换窗口

在文本编辑器中,按下 Ctrl + R(Windows/Linux)或 Cmd + R(Mac)打开查找和替换窗口。

2. 启用正则表达式

确保选中“正则表达式”选项,以便使用正则表达式进行查找和替换。

3. 输入查找模式(替换 id 列)

在“查找”框中输入以下内容后点Replace ALL:

`id`, 

4. 输入查找模式

在“查找”框中输入以下正则表达式:

VALUES \((\d+), 

这个表达式用于匹配 VALUES ( 后面跟着的数字(即 ID 列的值),并捕获它。

5. 输入替换模式

在“替换”框中输入:

VALUES (

这样就会选中 ID 列的值。

6. 执行替换

点击“Replace ALL”来完成操作。此时,所有的 INSERT 语句将不再包含 ID 列。

下面是原始SQL,供大家练习测试

INSERT INTO `example_db`.`example_table` (`column1`, `column2`) VALUES (1, 'value1', 'data1');
INSERT INTO `example_db`.`example_table` (`column1`, `column2`) VALUES (2, 'value2', 'data2');
INSERT INTO `example_db`.`example_table` (`column1`, `column2`) VALUES (3, 'value3', 'data3');
INSERT INTO `example_db`.`example_table` (`column1`, `column2`) VALUES (4, 'value4', 'data4');
INSERT INTO `example_db`.`example_table` (`column1`, `column2`) VALUES (5, 'value5', 'data5');
INSERT INTO `example_db`.`example_table` (`column1`, `column2`) VALUES (6, 'value6', 'data6');
INSERT INTO `example_db`.`example_table` (`column1`, `column2`) VALUES (7, 'value7', 'data7');
INSERT INTO `example_db`.`example_table` (`column1`, `column2`) VALUES (8, 'value8', 'data8');
INSERT INTO `example_db`.`example_table` (`column1`, `column2`) VALUES (9, 'value9', 'data9');
INSERT INTO `example_db`.`example_table` (`column1`, `column2`) VALUES (10, 'value10', 'data10');
INSERT INTO `example_db`.`example_table` (`column1`, `column2`) VALUES (11, 'value11', 'data11');
INSERT INTO `example_db`.`example_table` (`column1`, `column2`) VALUES (12, 'value12', 'data12');
INSERT INTO `example_db`.`example_table` (`column1`, `column2`) VALUES (13, 'value13', 'data13');
INSERT INTO `example_db`.`example_table` (`column1`, `column2`) VALUES (14, 'value14', 'data14');
INSERT INTO `example_db`.`example_table` (`column1`, `column2`) VALUES (15, 'value15', 'data15');
INSERT INTO `example_db`.`example_table` (`column1`, `column2`) VALUES (16, 'value16', 'data16');
INSERT INTO `example_db`.`example_table` (`column1`, `column2`) VALUES (17, 'value17', 'data17');
INSERT INTO `example_db`.`example_table` (`column1`, `column2`) VALUES (18, 'value18', 'data18');
INSERT INTO `example_db`.`example_table` (`column1`, `column2`) VALUES (19, 'value19', 'data19');
INSERT INTO `example_db`.`example_table` (`column1`, `column2`) VALUES (20, 'value20', 'data20');
INSERT INTO `example_db`.`example_table` (`column1`, `column2`) VALUES (21, 'value21', 'data21');
INSERT INTO `example_db`.`example_table` (`column1`, `column2`) VALUES (22, 'value22', 'data22');
INSERT INTO `example_db`.`example_table` (`column1`, `column2`) VALUES (23, 'value23', 'data23');
INSERT INTO `example_db`.`example_table` (`column1`, `column2`) VALUES (24, 'value24', 'data24');
INSERT INTO `example_db`.`example_table` (`column1`, `column2`) VALUES (25, 'value25', 'data25');
INSERT INTO `example_db`.`example_table` (`column1`, `column2`) VALUES (26, 'value26', 'data26');
INSERT INTO `example_db`.`example_table` (`column1`, `column2`) VALUES (27, 'value27', 'data27');
INSERT INTO `example_db`.`example_table` (`column1`, `column2`) VALUES (28, 'value28', 'data28');
INSERT INTO `example_db`.`example_table` (`column1`, `column2`) VALUES (29, 'value29', 'data29');
INSERT INTO `example_db`.`example_table` (`column1`, `column2`) VALUES (30, 'value30', 'data30');
INSERT INTO `example_db`.`example_table` (`column1`, `column2`) VALUES (31, 'value31', 'data31');
INSERT INTO `example_db`.`example_table` (`column1`, `column2`) VALUES (32, 'value32', 'data32');
INSERT INTO `example_db`.`example_table` (`column1`, `column2`) VALUES (33, 'value33', 'data33');
INSERT INTO `example_db`.`example_table` (`column1`, `column2`) VALUES (34, 'value34', 'data34');
INSERT INTO `example_db`.`example_table` (`column1`, `column2`) VALUES (35, 'value35', 'data35');
INSERT INTO `example_db`.`example_table` (`column1`, `column2`) VALUES (36, 'value36', 'data36');
INSERT INTO `example_db`.`example_table` (`column1`, `column2`) VALUES (37, 'value37', 'data37');
INSERT INTO `example_db`.`example_table` (`column1`, `column2`) VALUES (38, 'value38', 'data38');
INSERT INTO `example_db`.`example_table` (`column1`, `column2`) VALUES (39, 'value39', 'data39');
INSERT INTO `example_db`.`example_table` (`column1`, `column2`) VALUES (40, 'value40', 'data40');
INSERT INTO `example_db`.`example_table` (`column1`, `column2`) VALUES (41, 'value41', 'data41');
INSERT INTO `example_db`.`example_table` (`column1`, `column2`) VALUES (42, 'value42', 'data42');
INSERT INTO `example_db`.`example_table` (`column1`, `column2`) VALUES (43, 'value43', 'data43');
INSERT INTO `example_db`.`example_table` (`column1`, `column2`) VALUES (44, 'value44', 'data44');
INSERT INTO `example_db`.`example_table` (`column1`, `column2`) VALUES (45, 'value45', 'data45');
INSERT INTO `example_db`.`example_table` (`column1`, `column2`) VALUES (46, 'value46', 'data46');
INSERT INTO `example_db`.`example_table` (`column1`, `column2`) VALUES (47, 'value47', 'data47');
INSERT INTO `example_db`.`example_table` (`column1`, `column2`) VALUES (48, 'value48', 'data48');
INSERT INTO `example_db`.`example_table` (`column1`, `column2`) VALUES (49, 'value49', 'data49');
INSERT INTO `example_db`.`example_table` (`column1`, `column2`) VALUES (50, 'value50', 'data50');

http://www.lryc.cn/news/458418.html

相关文章:

  • pytorch中张量的有关操作
  • Windows多线程编程 互斥量和临界区使用
  • Java中集合类型的转换
  • 汽车售后TPMS浅谈
  • LUCEDA IPKISS Tutorial 77:在版图一定范围内填充dummy
  • TON生态小游戏开发:推广、经济模型与UI设计的建设指南
  • Python 量子机器学习:基础概念、关键算法与应用实践
  • 信息安全数学基础(29) x^2 + y^2 = p
  • ChatGPT国内中文版镜像网站整理合集(2024/10/06)
  • 图文深入理解Oracle DB Scheduler
  • gin如何具体利用Server-Send-Events(SSE)实时推送技术实现消息推送
  • 写端口-tcp udp不同方式发包和接包
  • 计算机的错误计算(一百二十)
  • Spring Boot 中使用 JSON Schema 来校验复杂 JSON 数据
  • QT实现Opencv图像处理
  • 刚转Mac的新手如何卸载不需要的应用程序
  • Unity 3d 继承MonoBahaviour的单例
  • grafana version 11.1.0 设置Y轴刻度为1
  • Elasticsearch的安装与配置
  • win0删除 Windows.old
  • 常见IDE及其编译器的讲解
  • 用SQLyog连接mysql提示2058错误
  • Web集群服务-Nginx
  • 获取时隔半个钟的三天
  • 构建可以ssh连接的容器镜像
  • 数据库中JOIN的用法?
  • java项目之纺织品企业财务管理系统源码(springboot+vue+mysql)
  • C语言 编程练习:解决五个有趣的问题
  • 二、安装vmtools
  • 用echarts画天气预报