当前位置: 首页 > news >正文

【自注意力与Transformer架构在自然语言处理中的演变与应用】

背景介绍

  • 在自然语言处理(NLP)领域,序列到序列(seq2seq)模型和Transformer架构的出现,极大地推动了机器翻译、文本生成和其他语言任务的进展。传统的seq2seq模型通常依赖于循环神经网络(RNN)来处理输入序列,并通过编码器-解码器结构进行信息传递。然而,这种方法在处理长序列时存在一定的局限性,主要体现在信息的丢失和长距离依赖的建模能力不足。

  • 为了解决这些问题,Transformer模型于2017年被提出。它引入了自注意力机制(Self-Attention),使得模型能够在处理每个单词时,考虑到句子中所有其他单词的上下文信息。这种机制不仅提高了模型对长距离依赖的捕捉能力,还显著提升了并行计算的效率,从而加快了训练速度。

  • 自注意力机制的核心在于通过计算查询(Query)、键(Key)和值(Value)向量之间的相关性,来动态调整每个单词在上下文中的重要性。这种方法使得模型能够灵活地关注句子中不同位置的词,从而更好地理解和生成语言。

  • 此外,Transformer模型的多头注意力机制进一步增强了模型的表达能力。通过将注意力机制分成多个头,模型能够在不同的子空间中学习到多种不同的表示,从而捕捉到更丰富的语义信息。

  • 近年来,基于Transformer的模型,如BERT、GPT和CLIP等,已经在多个NLP任务中取得了显著的成果。这些模型不仅在文本处理上表现出色,还扩展到了图像处理和多模态学习等领域,展示了Transformer架构的广泛适用性和强大能力。

  • 综上所述,seq2seq模型和Transformer架构的演变,标志着自然语言处理技术的重大进步,为实现更智能的语言理解和生成奠定了基础。

seq2seq原理

  • 参考:https://blog.csdn.net/zhuge2017302307/article/details/119979892
  • 对比作用
    在这里插入图片描述
    在这里插入图片描述

Transformer原理

在这里插入图片描述

Self-Attention 过程

如上一节所讲,Self Attention 在处理某个词之前,通过对句子片段中每个词的相关性进行打分,并将这些词的表示向量加权求和。

Self-Attention 沿着句子中每个 token 的路径进行处理,主要组成部分包括 3 个向量:

  1. Query:Query 向量是当前单词的表示,用于对其他所有单词(使用这些单词的 key 向量)进行评分。我们只关注当前正在处理的 token 的 query 向量。
  2. Key:Key 向量就像句子中所有单词的标签。它们就是我们在搜索单词时所要匹配的。
  3. Value:Value 向量是实际的单词表示,一旦我们对每个词的相关性进行了评分,我们需要对这些向量进行加权求和,从而表示当前的词。
    在这里插入图片描述
  • 以下是计算it时的评分
    在这里插入图片描述
  • 这些加权的 Value 向量会得到一个向量,它将 50% 的注意力放到单词robot 上,将 30% 的注意力放到单词 a,将 19% 的注意力放到单词 it。最终一个具有高分数的 Value 向量会占据结果向量的很大一部分
  • 上面都是展示大量的单个向量,是想把重点放在词汇层面上。而实际的代码实现,是通过巨大的矩阵相乘来完成的

MultiheadAttention

在这里插入图片描述

  • 多头注意力模型中,head数是一个超参数,语料大,电脑性能好就可以设置的高一点

torch实现

torch.nn.MultiheadAttention(embed_dim, num_heads, dropout=0.0, bias=True, add_bias_kv=False, add_zero_attn=False, kdim=None, vdim=None)
 1.embed_dim:最终输出的 K、Q、V 矩阵的维度,这个维度需要和词向量的维度一样
 2.num_heads:设置多头注意力的数量。要求embed_dim%num_heads==0,即要能被embed_dim整除。这是为了把词的隐向量长度平分到每一组,这样多组注意力也能够放到一个矩阵里,从而并行计算多头注意力。
 3.dropout:这个 dropout 加在 attention score 后面
  例如,我们前面说到,8 组注意力可以得到 8 组 Z 矩阵,然后把这些矩阵拼接起来,得到最终的输出。
  如果最终输出的每个词的向量维度是 512,那么每组注意力的向量维度应该是512/8=64 如果不能够整除,那么这些向量的长度就无法平均分配。

Self-Attention 和经典的(seq2seq)模型的区别

一个注意力模型不同于经典的(seq2seq)模型,主要体现在 3 个方面:

  1. 编码器把所有时间步的 hidden state(隐藏层状态)传递给解码器,而非只传递最后一个 hidden state。即编码器会把更多的数据传递给解码器。
  2. 对于 Self Attention 机制,会把其他单词的理解融入处理当前的单词。使得模型不仅能够关注这个位置的词,而且能够关注句子中其他位置的词,作为辅助线索,进而可以更好地编码当前位置的词。
  3. 解码器输出之前,计算了注意力。让模型找到此时刻最该注意的词。

对于第二点举例如下:

机器人第二定律

机器人必须服从人给予它的命令,当该命令与第一定律冲突时例外。

句子中高亮的 3 个部分,用于指代其他的词。如果不结合它们所指的上下文,就无法理解或者处理这些词。当一个模型要处理好这个句子,它必须能够知道:

  • 指的是机器人
  • 该命令 指的是这个定律的前面部分,也就是人给予它的命令
  • 第一定律 指的是机器人第一定律

Self Attention 能做到这一点。它在处理某个词之前,将模型中这个词的相关词和关联词的理解融合起来(并输入到一个神经网络)。它通过对句子片段中每个词的相关性打分(attention score),并将这些词向量加权求和。

下图顶部模块中的 Self Attention 层在处理单词 it 的时候关注到 a robot。它最终传递给神经网络的向量,是这 3 个单词的词向量加权求和的结果。
在这里插入图片描述

QKV计算过程

在这里插入图片描述

为什么求内积之后除以 d \sqrt{d} d

在计算相似度 s = ⟨ q , k ⟩ s = \langle q, k \rangle s=q,k 时, s s s 要除以 d k e y \sqrt{d_{key}} dkey (Key 向量的长度)。原因是词向量 embedding 维度过高时, s s s 过大,softmax 函数会进入饱和区。例如:

对于两个 d d d 维向量 q , k q, k q,k,假设它们都采样自“均值为 0、方差为 1”的分布。Attention 是内积后 softmax,主要设计的运算是 e q ⋅ k e^{q \cdot k} eqk,我们可以大致认为内积之后、softmax 之前的数值在 − 3 d -3\sqrt{d} 3d 3 d 3\sqrt{d} 3d 这个范围内,由于 d d d 通常都至少是 64,所以 e 3 d e^{3\sqrt{d}} e3d 比较大而 e − 3 d e^{-3\sqrt{d}} e3d 比较小,softmax 函数进入饱和区。这样会有两个影响:

  1. 带来严重的梯度消失问题,导致训练效果差。
  2. softmax 之后,归一化后计算出来的结果 a a a 要么趋近于 1 要么趋近于 0,Attention 的分布非常接近一个 one hot 分布了,加权求和退化成胜者全拿,则解码时只关注注意力最高的(attention 模型还是希望别的词也有权重)。

相应地,解决方法有两个(参考苏剑林《浅谈 Transformer 的初始化、参数化与标准化》):

  1. 像 NTK 参数化那样,在内积之后除以 d \sqrt{d} d ,使 q ⋅ k q \cdot k qk 的方差变为 1,对应 e 3 e^{3} e3 e − 3 e^{-3} e3 都不至于过大过小,这也是常规的 Transformer 如 BERT 里边的 Self Attention 的做法。对公式 s = ⟨ q , k ⟩ s = \langle q, k \rangle s=q,k 进行优化:( q q q k k k 求内积,所以其实 key 和 q q q 的向量长度一样。)

    s = ⟨ q , k ⟩ d k e y s = \frac{\langle q, k \rangle}{\sqrt{d_{key}}} s=dkey q,k

  2. 另外就是不除以 d \sqrt{d} d ,但是初始化 q , k q, k q,k 的全连接层的时候,其初始化方差要多除以一个 d d d,这同样能使得 q ⋅ k q \cdot k qk 的初始方差变为 1,T5 采用了这样的做法。

参考

  • https://blog.csdn.net/qq_56591814/article/details/119759105
  • https://blog.csdn.net/weixin_38252409/article/details/133828294
http://www.lryc.cn/news/457701.html

相关文章:

  • LabVIEW交直流接触器动态检测系统
  • Unity3D中基于四叉树的范围检测算法详解
  • k8s网络通信
  • 07 欢乐的跳
  • 【韩顺平Java笔记】第8章:面向对象编程(中级部分)【262-271】
  • GNU链接器(LD):输入分区的垃圾回收及保护处理(KEEP命令)介绍
  • 论文翻译 | Fairness-guided Few-shot Prompting for LargeLanguage Models
  • 【分布式微服务云原生】战胜Redis脑裂:深入解析与解决方案
  • 数据治理与可持续发展:开启企业价值新模式——The Open Group 2024生态系统架构·可持续发展年度大会邀您共襄盛举
  • 数据库的分类及主流数据库
  • Qt C++设计模式->备忘录模式
  • Vue使用@别名替换后端ip地址
  • 强大的PDF到Word转换工具
  • js进阶——深入解析JavaScript中的URLSearchParams
  • 如何利用wsl-Ubuntu里conda用来给Windows的PyCharm开发
  • 操作系统的了解及安装
  • 【C++篇】虚境探微:多态的流动诗篇,解锁动态的艺术密码
  • uniapp的相关知识(1)
  • uniapp生成随机数
  • 使用jenkins将airflow-dbt部署到服务器上
  • 初学java练习题【1】
  • 大模型应用探讨,免费AI写作、一键PPT、免费PDF百种应用、与AI对话
  • 计算机视觉之OpenCV vs YOLO
  • 【深度学习基础模型】胶囊网络(Capsule Networks, CapsNet)详细理解并附实现代码。
  • 科普向 -- 什么是RPC
  • SpringBoot教程(二十四) | SpringBoot实现分布式定时任务之Quartz(基础)
  • 【现代控制理论】第2-5章课后题刷题笔记
  • (四)Proteus仿真STM32单片机使用定时器控制LED
  • Python快速编程小案例——打印蚂蚁森林植树证书
  • Cherno游戏引擎笔记(61~72)