当前位置: 首页 > news >正文

【附源码】Python :打家劫舍

系列文章目录

Python 算法学习:打家劫舍问题


文章目录

  • 系列文章目录
  • 一、算法需求
  • 二、解题思路
  • 三、具体方法+源码
    • 方法1:动态规划(自底向上)
    • 方法2:动态规划(自顶向下)
    • 方法3:优化的动态规划
    • 方法4:递归
  • 总结


一、算法需求

“打家劫舍”问题是一个经典的动态规划问题,通常用来描述一个小偷在一条街上偷窃房屋的场景。每间房屋都有一定数量的现金,小偷需要决定偷哪些房屋以最大化他的收益。但是,小偷面临一个限制:如果两间相邻的房屋在同一晚上被偷,那么防盗系统会触发报警。因此,小偷不能偷窃相邻的房屋。


二、解题思路

动态规划: 定义一个数组 dp,其中 dp[i] 表示到第 i 间房屋为止能偷到的最大金额。状态转移方程是 dp[i] = max(dp[i-1], dp[i-2] + nums[i]),表示可以选择偷当前房子(前提是不偷前一个房子)或者不偷当前房子(延续前一个房子的决策)。

贪心算法: 虽然不总是最优,但可以作为一种尝试。在每一步选择当前能获得的最大金额,而不考虑未来的房子。

递归: 通过递归函数模拟决策过程,考虑偷或不偷当前房子,并取两种选择中的最大值。

优化空间: 使用两个变量代替数组,减少空间复杂度。


三、具体方法+源码

方法1:动态规划(自底向上)

状态定义:dp[i] 表示到第 i 个房子为止能偷到的最大金额。

计算过程:

dp[0] = 2(只考虑第一个房子)
dp[1] = max(2, 7) = 7(考虑第一个和第二个房子)
dp[2] = max(7, 2+9) = 9(考虑第二个和第三个房子)
dp[3] = max(9, 7+3) = 10(考虑第三个和第四个房子)
dp[4] = max(10, 9+1) = 12(考虑第四个和第五个房子)
结果:12

代码如下:

def rob1(nums):if not nums:return 0if len(nums) == 1:return nums[0]dp = [0] * len(nums)dp[0] = nums[0]dp[1] = max(nums[0], nums[1])for i in range(2, len(nums)):dp[i] = max(dp[i-1], dp[i-2] + nums[i])return dp[-1]# 测试
nums = [2, 7, 9, 3, 1]
print("最高金额:", rob1(nums))

方法2:动态规划(自顶向下)

计算过程:

从 rob(0) 开始
rob(1) = max(rob(2), rob(3)) = max(7, 9) = 9
rob(2) = max(rob(3), rob(4) + 2) = max(9, 10) = 10
rob(3) = max(rob(4), rob(5) + 3) = max(9, 12) = 12
rob(4) = max(rob(5), rob(6) + 1) = max(7, 12) = 12
结果:12

代码如下:

def rob2(nums):memo = {}def rob(i):if i >= len(nums):return 0if i in memo:return memo[i]memo[i] = max(rob(i+1), nums[i] + rob(i+2))return memo[i]return rob(0)# 测试
nums = [2, 7, 9, 3, 1]
print("最高金额:", rob2(nums))

方法3:优化的动态规划

计算过程:

prev = 2, curr = 7
prev = 7, curr = 9
prev = 9, curr = 10
prev = 10, curr = 12
结果:12

代码如下:

def rob3(nums):if not nums:return 0if len(nums) == 1:return nums[0]prev, curr = 0, 0for num in nums:prev, curr = curr, max(prev + num, curr)return curr# 测试
nums = [2, 7, 9, 3, 1]
print("最高金额:", rob3(nums))

方法4:递归

计算过程:

helper(0) = max(helper(1), helper(2) + 2) = max(7, 9) = 9
helper(1) = max(helper(2), helper(3) + 7) = max(9, 10) = 10
helper(2) = max(helper(3), helper(4) + 9) = max(10, 12) = 12
helper(3) = max(helper(4), helper(5) + 3) = max(9, 12) = 12
helper(4) = max(helper(5), 1) = 12
结果:12

代码如下:

def rob4(nums):def helper(i):if i == len(nums):return 0if i == len(nums) - 1:return nums[i]return max(helper(i+1), nums[i] + helper(i+2))return helper(0)# 测试
nums = [2, 7, 9, 3, 1]
print("最高金额:", rob4(nums))

总结

这个问题在算法学习中非常重要,因为它展示了如何使用动态规划解决具有重叠子问题和最优子结构特性的问题。它也常用于面试中,考察候选人对动态规划的理解和应用能力。

这个问题的变种也很多,比如考虑环形街道的情况,或者房屋之间的防盗系统有不同的触发条件等。

http://www.lryc.cn/news/456912.html

相关文章:

  • YOLO11改进 | 注意力机制| 对小目标友好的BiFormer【CVPR2023】
  • 高级Python开发工程师的面试备考指南
  • 【Java】JAVA知识总结浅析
  • 23-云原生监控系统
  • 信息安全工程师(40)防火墙技术应用
  • Liquid AI与液态神经网络:超越Transformer的大模型架构探索
  • Spring Boot 进阶-详解Spring Boot中使用Swagger3.0
  • Linux平台Kafka高可用集群部署全攻略
  • Android中有哪些布局方式?
  • Apache Ranger 70道面试题及参考答案
  • 2024年9月30日--10月6日(ue5肉鸽结束,20小时,共2851小时)
  • 什么是静态加载-前端
  • (01)python-opencv基础知识入门(图片的读取与视频打开)
  • quic-go实现屏幕广播程序
  • C#操作SqlServer数据库语句
  • Linux之实战命令33:mount应用实例(六十七)
  • 论文精读:基于概率教师学习的跨域自适应目标检测(ICML2022)
  • thinkphp 学习记录
  • Leetcode 24 Swap Nodes in Pairs
  • 选择 PDF 编辑器时要考虑什么?如何选择适用于 Windows 10 的 PDF 编辑器
  • 33-Golang开发入门精讲
  • 研发中台拆分之路:深度剖析、心得总结与经验分享
  • SWIFT Payment
  • 数据结构之红黑树实现(全)
  • 冷热数据分离
  • 朝花夕拾:多模态图文预训练的前世今生
  • 亳州自闭症寄宿制学校,关注孩子的学习和生活
  • Root me CTF all the day靶场ssrf+redis漏洞
  • C#中Json序列化的进阶用法
  • IO相关的常用工具包