当前位置: 首页 > news >正文

PCL 3D-SIFT关键点检测(Z方向梯度约束

目录

一、概述

1.1原理

1.2实现步骤

1.3应用场景

二、代码实现

2.1关键函数

2.1.1 SIFT关键点检测

2.1.2 可视化函数

2.2完整代码

三、实现效果


PCL点云算法汇总及实战案例汇总的目录地址链接:

PCL点云算法与项目实战案例汇总(长期更新)


一、概述

        3D-SIFT关键点检测是SIFT算法在三维点云中的扩展应用。与二维图像的SIFT类似,它通过尺度空间的构建和局部特征检测来提取点云的关键点。在三维点云中,SIFT可以通过计算每个点在Z方向的梯度,找到具有几何显著特征的关键点,适用于物体识别、特征匹配、点云配准等应用场景。

1.1原理

        SIFT(Scale-Invariant Feature Transform)算法通过建立图像的尺度空间来提取关键点。在三维点云中,我们可以通过分析Z轴方向的变化(梯度)来检测点云的关键点。其核心步骤包括:

  1. 尺度空间构建:通过不同尺度的高斯核卷积,构造尺度空间,使得算法能够在不同的尺度下检测关键点。最小尺度通过参数 min_scale 设置,尺度空间的层数和每个层次的尺度数量由 n_octaves n_scales_per_octave 控制。
  2. 关键点检测:通过对尺度空间的极值点检测来提取关键点,极值点通过比较邻域点在不同尺度下的响应得到。为了减少检测到的无效点,需要设置最小对比度 min_contrast,以过滤掉噪声。
  3. 梯度估计:利用Z方向的变化,估计点云中每个点的局部梯度,作为响应值。Z轴梯度用于构建响应函数,并检测局部极值。

参数解释

  • min_scale:最小尺度,控制高斯核的最小标准差。
  • n_octaves:尺度空间的层数。
  • n_scales_per_octave:每个层次的尺度数量。
  • min_contrast:最小对比度,用于过滤掉低响应值的点。

1.2实现步骤

  1. 加载点云数据。
  2. 初始化SIFT关键点提取器,设置所需的参数(如尺度、对比度等)。
  3. 通过SIFT算法提取点云中的关键点,并将结果转换为标准的XYZ点云格式。
  4. 可视化原始点云和提取的SIFT关键点。

1.3应用场景

  1. 三维物体识别:通过SIFT提取点云的关键点进行特征匹配和物体识别。
  2. 点云配准:利用关键点信息对不同视角的点云进行精确对齐。
  3. 特征提取:用于三维重建、机器人导航等领域中的特征提取和环境感知。

二、代码实现

2.1关键函数

2.1.1 SIFT关键点检测

void extractSIFTKeypoints(pcl::PointCloud<pcl::PointXYZ>::Ptr cloud, pcl::PointCloud<pcl::PointWithScale>::Ptr keypoints)
{// 设置SIFT算法参数const float min_scale = 0.001f;           // 设置尺度空间中最小尺度的标准偏差          const int n_octaves = 3;                  // 设置尺度空间层数,越小则特征点越多           const int n_scales_per_octave = 15;       // 设置尺度空间中计算的尺度个数const float min_contrast = 0.0001f;       // 设置限制关键点检测的阈值   // 创建SIFT关键点检测对象pcl::SIFTKeypoint<pcl::PointXYZ, pcl::PointWithScale> sift;sift.setInputCloud(cloud);                // 设置输入点云pcl::search::KdTree<pcl::PointXYZ>::Ptr tree(new pcl::search::KdTree<pcl::PointXYZ> ());sift.setSearchMethod(tree);               // 设置KdTree搜索sift.setScales(min_scale, n_octaves, n_scales_per_octave); // 设置尺度范围sift.setMinimumContrast(min_contrast);    // 设置最小对比度// 执行SIFT关键点检测sift.compute(*keypoints);
}

2.1.2 可视化函数

void visualizeSIFTKeypoints(pcl::PointCloud<pcl::PointXYZ>::Ptr cloud, pcl::PointCloud<pcl::PointXYZ>::Ptr keypoints)
{boost::shared_ptr<pcl::visualization::PCLVisualizer> viewer(new pcl::visualization::PCLVisualizer("SIFT Keypoints Viewer"));int v1(0), v2(0);viewer->createViewPort(0, 0.0, 0.5, 1.0, v1);viewer->setBackgroundColor(1.0, 1.0, 1.0, v1); // 设置白色背景viewer->addText("Original Point Cloud", 10, 10, "v1_text", v1);viewer->createViewPort(0.5, 0.0, 1.0, 1.0, v2);viewer->setBackgroundColor(0.98, 0.98, 0.98, v2); // 设置灰色背景viewer->addText("SIFT Keypoints", 10, 10, "v2_text", v2);// 原始点云显示为绿色pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZ> original_color(cloud, 0, 255, 0);viewer->addPointCloud(cloud, original_color, "original_cloud", v1);// 关键点显示为红色pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZ> keypoints_color(keypoints, 255, 0, 0);viewer->addPointCloud(keypoints, keypoints_color, "keypoints_cloud", v2);// 设置点大小viewer->setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 5, "keypoints_cloud");// 添加坐标系viewer->addCoordinateSystem(1.0);while (!viewer->wasStopped()){viewer->spinOnce(100);boost::this_thread::sleep(boost::posix_time::microseconds(100000));}
}

2.2完整代码

#include <iostream>
#include <pcl/io/pcd_io.h>
#include <pcl/point_types.h>
#include <pcl/keypoints/sift_keypoint.h>
#include <pcl/visualization/pcl_visualizer.h>
#include <pcl/common/time.h>
#include <boost/thread/thread.hpp>// 基于Z梯度估计3D点云的SIFT关键点
namespace pcl
{template<>struct SIFTKeypointFieldSelector<PointXYZ>{inline floatoperator () (const PointXYZ& p) const{return p.z;}};
}// 提取SIFT关键点
void extractSIFTKeypoints(pcl::PointCloud<pcl::PointXYZ>::Ptr cloud, pcl::PointCloud<pcl::PointWithScale>::Ptr keypoints)
{const float min_scale = 0.001f;           // 设置尺度空间中最小尺度的标准偏差          const int n_octaves = 3;                  // 设置尺度空间层数,越小则特征点越多           const int n_scales_per_octave = 15;       // 设置尺度空间中计算的尺度个数const float min_contrast = 0.0001f;       // 设置限制关键点检测的阈值   // 创建SIFT关键点检测对象pcl::SIFTKeypoint<pcl::PointXYZ, pcl::PointWithScale> sift;sift.setInputCloud(cloud);                // 设置输入点云pcl::search::KdTree<pcl::PointXYZ>::Ptr tree(new pcl::search::KdTree<pcl::PointXYZ>());sift.setSearchMethod(tree);               // 设置KdTree搜索sift.setScales(min_scale, n_octaves, n_scales_per_octave); // 设置尺度范围sift.setMinimumContrast(min_contrast);    // 设置最小对比度// 执行SIFT关键点检测sift.compute(*keypoints);
}// 可视化SIFT关键点
void visualizeSIFTKeypoints(pcl::PointCloud<pcl::PointXYZ>::Ptr cloud, pcl::PointCloud<pcl::PointXYZ>::Ptr keypoints)
{boost::shared_ptr<pcl::visualization::PCLVisualizer> viewer(new pcl::visualization::PCLVisualizer("SIFT Keypoints Viewer"));int v1(0), v2(0);viewer->createViewPort(0, 0.0, 0.5, 1.0, v1);viewer->setBackgroundColor(1.0, 1.0, 1.0, v1); // 设置白色背景viewer->addText("Original Point Cloud", 10, 10, "v1_text", v1);viewer->createViewPort(0.5, 0.0, 1.0, 1.0, v2);viewer->setBackgroundColor(0.98, 0.98, 0.98, v2); // 设置灰色背景viewer->addText("SIFT Keypoints", 10, 10, "v2_text", v2);// 原始点云显示为绿色pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZ> original_color(cloud, 0, 255, 0);viewer->addPointCloud(cloud, original_color, "original_cloud", v1);// 关键点显示为红色pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZ> keypoints_color(keypoints, 255, 0, 0);viewer->addPointCloud(keypoints, keypoints_color, "keypoints_cloud", v2);// 设置点大小viewer->setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 3, "keypoints_cloud");// 添加坐标系viewer->addCoordinateSystem(0.1);while (!viewer->wasStopped()){viewer->spinOnce(100);boost::this_thread::sleep(boost::posix_time::microseconds(100000));}
}int main(int argc, char* argv[])
{pcl::StopWatch watch; // 计时器pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_xyz(new pcl::PointCloud<pcl::PointXYZ>);pcl::io::loadPCDFile("bunny.pcd", *cloud_xyz);// 提取SIFT关键点pcl::PointCloud<pcl::PointWithScale>::Ptr sift_keypoints(new pcl::PointCloud<pcl::PointWithScale>);extractSIFTKeypoints(cloud_xyz, sift_keypoints);// 将SIFT关键点转换为标准XYZ格式pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_temp(new pcl::PointCloud<pcl::PointXYZ>);pcl::copyPointCloud(*sift_keypoints, *cloud_temp);std::cout << "Extracted " << sift_keypoints->size() << " keypoints" << std::endl;std::cout << "SIFT关键点提取用时: " << watch.getTimeSeconds() << "秒" << std::endl;// 可视化输入点云和SIFT关键点visualizeSIFTKeypoints(cloud_xyz, cloud_temp);return 0;
}

三、实现效果

http://www.lryc.cn/news/456726.html

相关文章:

  • 肺结节分割与提取系统(基于传统图像处理方法)
  • ESP32 COAP 客户端观察者模式下,GET服务器的例程
  • 【Kubernetes】常见面试题汇总(五十七)
  • Java 设计模式 构建者模式
  • 建设企业网站如何建
  • C++ inline 的更进一步理解
  • 海康威视云台相机图像获取
  • 什么是词嵌入(Word Embedding)
  • LSTM时间序列模型实战——预测上证指数走势
  • 基于 STM32F407 的 SPI Flash下载算法
  • 力扣之1355.活动参与者
  • 数据资产治理:构建敏捷与安全的数据管理体系
  • Nodejs连接Mysql笔记
  • Canvas:AI协作的新维度
  • 【深度学习】— softmax回归、网络架构、softmax 运算、小批量样本的向量化、交叉熵
  • C# Wpf 图片按照鼠标中心缩放和平移
  • 网络安全产品类型
  • 【开源风云】从若依系列脚手架汲取编程之道(五)
  • 金融市场的衍生品交易及其风险管理探讨
  • 一、创建型(单例模式)
  • 毕业设计项目-古典舞在线交流平台的设计与实现(源码/论文)
  • 【秋招笔试】10.09华子秋招(已改编)-三语言题解
  • 【算法笔记】双指针算法深度剖析
  • 第二十二天|回溯算法| 理论基础,77. 组合(剪枝),216. 组合总和III,17. 电话号码的字母组合
  • 关闭IDM自动更新
  • Go 性能剖析工具 pprof 与 Graphviz 教程
  • 【题目解析】蓝桥杯23国赛C++中高级组 - 斗鱼养殖场
  • JavaScript可视化:探索顶尖的图表库
  • 谷歌AI大模型Gemini API快速入门及LangChain调用视频教程
  • 进入容器:掌控Docker的世界