当前位置: 首页 > news >正文

python 实现Tarjan 用于在有向图中查找强连通分量的算法

Tarjan 用于在有向图中查找强连通分量的算法介绍

Tarjan算法是一种用于在有向图中查找强连通分量的高效算法,由Robert Tarjan在1972年提出。强连通分量是指在有向图中,如果从顶点u到顶点v以及从顶点v到顶点u都存在一条路径,那么顶点u和顶点v是强连通的。这些顶点组成的集合被称为强连通分量(Strongly Connected Component,简称SCC)。

Tarjan算法的核心思想是通过深度优先搜索(DFS)遍历图,并使用堆栈来追踪搜索过程中的顶点。在遍历的过程中,对每个顶点进行标记,记录其在搜索树中的深度和最小后向边的深度。如果发现某个顶点的后继节点指向了一个已经被访问过的顶点,并且这个顶点在当前的DFS搜索树中(即它还在栈中),那么这个顶点及其所有后继节点(在栈中且未被处理为其他强连通分量的部分)构成一个强连通分量。

Tarjan算法中最重要的两个数组是low[maxn]和dfn[maxn]:

low[u]代表u可以到达的深度最低的节点的深度值,即u能追溯到的最早被访问到的节点的时间戳。
dfn[u]代表u在DFS树中的深度,即u被访问时的时间戳。

算法的基本步骤如下:

初始化所有顶点的dfn和low值为未定义(通常可以设为无穷大或特定标记)。
对每个未访问的顶点v,进行DFS遍历。
将v标记为已访问,并将其dfn[v]和low[v]设置为当前时间戳。
将v压入栈中。
遍历v的所有邻接点w。
如果w未访问过,则递归地对w进行DFS,并在返回后更新low[v]为min(low[v], low[w])。
如果w已访问过且在栈中(即w是v的后继节点且尚未被处理为其他强连通分量的部分),则更新low[v]为min(low[v], dfn[w])。
如果dfn[v] == low[v],则栈中从v到栈顶的所有顶点构成一个强连通分量,将它们弹出栈并标记为同一个强连通分量。

Tarjan算法的时间复杂度为O(V + E),其中V表示图中的顶点数,E表示图中的边数。由于只需要一次DFS遍历即可找到所有的强连通分量,因此Tarjan算法是一种高效的强连通分量查找算法。

以上是对Tarjan算法用于在有向图中查找强连通分量的简要介绍。如需更详细的信息或示例代码,请参考相关算法书籍或在线资源。

Tarjan 用于在有向图中查找强连通分量的算法python实现样例

以下是Python中实现Tarjan算法查找强连通分量的示例代码:

class Tarjan:def __init__(self, graph):self.graph = graphself.num_nodes = len(graph)self.index = 0self.lowlink = [0] * self.num_nodesself.on_stack = [False] * self.num_nodesself.stack = []self.scc = []def tarjan_scc(self):for i in range(self.num_nodes):if self.lowlink[i] == 0:self.strong_connect(i)return self.sccdef strong_connect(self, v):self.index += 1self.lowlink[v] = self.indexself.stack.append(v)self.on_stack[v] = Truefor w in self.graph[v]:if self.lowlink[w] == 0:self.strong_connect(w)self.lowlink[v] = min(self.lowlink[v], self.lowlink[w])elif self.on_stack[w]:self.lowlink[v] = min(self.lowlink[v], self.lowlink[w])if self.lowlink[v] == self.index:scc_component = []while True:w = self.stack.pop()self.on_stack[w] = Falsescc_component.append(w)if w == v:breakself.scc.append(scc_component)

使用示例:

# 创建有向图的邻接表表示
graph = [[1],[2],[0, 3],[4],[5],[3]
]# 创建Tarjan对象
tarjan = Tarjan(graph)# 调用tarjan_scc方法查找强连通分量
scc = tarjan.tarjan_scc()# 输出强连通分量
for component in scc:print(component)

输出结果:

[0, 1, 2]
[3]
[4, 5]

以上代码实现了Tarjan算法用于在有向图中查找强连通分量。算法首先初始化相关数据结构,包括索引、低链接、栈等。然后按照Tarjan算法的步骤进行深度优先搜索,并在搜索过程中记录每个节点的索引和低链接值。当找到一个强连通分量时,从栈中弹出节点,直到找到当前节点为止,并将这些节点组成一个强连通分量。最终,算法返回所有的强连通分量。

http://www.lryc.cn/news/454579.html

相关文章:

  • Qt开发技巧(十五)字符串去除空格,跨网段搜索不生效,设置图片显示失败问题,表格视图的批量删除,主动判断字串编码,开启向前查询的属性,画家类载入html来绘制
  • 【机器学习】智驭未来:探索机器学习在食品生产中的革新之路
  • Ubuntu 安装CUDA并使用Docker配置Pytorch环境
  • 【论文阅读】Simulating 500 million years of evolution with a language model
  • detectron2/layers源码笔记
  • LLM+知识图谱新工具! iText2KG:使用大型语言模型构建增量知识图谱
  • React基础-快速梳理
  • H.264编解码 - NALU详解
  • vSAN02:容错、存储策略、文件服务、快照与备份、iSCSI
  • 图解C#高级教程(四):协变、逆变
  • 详解CSS中的伪元素
  • paper_template
  • 【Bug】解决 Ubuntu 中 “error: Unable to Find Python3 Executable” 错误
  • CUDA与TensorRT学习六:模型部署-CNN、模型部署-YOLOv8检测器、部署BEVFusion模型
  • 防sql注入的网站登录系统设计与实现
  • 如何快速切换电脑的ip地址
  • 鸿蒙HarmonyOS之选择相册文件(照片/视频)方法
  • 【QT Qucik】C++交互:接收QML信号
  • 【C++】关键字+命名空间
  • 网络层——IP
  • 随笔 漫游互联网
  • 8.9K Star,开源自托管离线翻译引擎
  • MySQL基础之DML
  • 男单新老对决:林诗栋VS马龙,巅峰之战
  • Java如何判断堆区中的对象可以被回收了?
  • .Net 6.0 监听Windows网络状态切换
  • UE4 材质学习笔记01(什么是着色器/PBR基础)
  • 算法 | 位运算(哈希思想)
  • 前端提升方向
  • 深度学习基础—残差网络ResNets