当前位置: 首页 > news >正文

CSP-S 2022 T1假期计划

CSP-S 2022 T1假期计划

先思考暴力做法,题目需要找到四个不相同的景点,那我们就枚举这四个景点,判断它们之间的距离是否符合条件,条件是任意两个点之间的距离是否大于 k k k,所以我们需要求出任意两点之间的距离。常用的 D i j k s t r a Dijkstra Dijkstra S P F A SPFA SPFA都是单源最短路,也就是只能求一个点到其它点的距离,而 F l o y e d Floyed Floyed可以求任意两个点之间的最短路,虽然其时间复杂度是 O ( n 3 ) O(n^3) O(n3),但对于这个做法的数据范围是可以接受的。这个做法的时间复杂度为 O ( n 4 ) O(n^4) O(n4)(枚举四个景点),在 k k k较小的情况下可以通过(因为 k k k会影响到循环退出),可以拿到 55 55 55分。

#include <bits/stdc++.h>
#define A 2510using namespace std;
typedef long long ll;
int n, m, kk, x, y, dis[A][A];
ll a[A], ans;int main(int argc, char const *argv[]) {scanf("%d%d%d", &n, &m, &kk); kk++;for (int i = 2; i <= n; i++) scanf("%lld", &a[i]);memset(dis, 0x3f, sizeof dis);for (int i = 1; i <= n; i++) dis[i][i] = 0;for (int i = 1; i <= m; i++) {scanf("%d%d", &x, &y);dis[x][y] = 1; dis[y][x] = 1;}for (int k = 1; k <= n; k++)for (int i = 1; i <= n; i++)for (int j = 1; j <= n; j++)dis[i][j] = min(dis[i][j], dis[i][k] + dis[k][j]);for (int i = 2; i <= n; i++) {if (dis[1][i] > kk) continue;for (int j = 2; j <= n; j++) {if (i == j) continue;if (dis[i][j] > kk) continue;for (int k = 2; k <= n; k++) {if (i == k or j == k) continue;if (dis[j][k] > kk) continue;for (int l = 2; l <= n; l++) {if (i == l or j == l or k == l) continue;if (dis[k][l] > kk or dis[l][1] > kk) continue;ans = max(ans, a[i] + a[j] + a[k] + a[l]);}}}}printf("%lld\n", ans);
}

比较特殊的数据点是当 k = 0 k=0 k=0时,也就是挑选的 4 4 4个景点必须都相邻,直接通过 d f s dfs dfs搜索所有的情况,如果遍历到了家( 1 1 1号点)并且已经路过了 4 4 4个不同的节点,这就是一条可行的路径,可以更新答案。 k = 0 k=0 k=0共有 9 9 9个测试点,共 45 45 45分。

#include <bits/stdc++.h>
#define A 2510using namespace std;
int n, m, k, a[A], ans;
bool vis[A], mp[A][A];
void dfs(int now, int sum, int left) {if (now == 1 and left == 0) {ans = max(ans, sum);return;}else if (left == 0) return;for (int i = 1; i <= n; i++) {if (!mp[now][i] or vis[i]) continue;vis[i] = 1;dfs(i, sum + a[i], left - 1);vis[i] = 0;}
}int main() {cin >> n >> m >> k;for (int i = 2; i <= n; i++) cin >> a[i];while (m--) {int x, y;cin >> x >> y;mp[x][y] = 1; mp[y][x] = 1;}dfs(1, 0, 5);cout << ans << endl;
}

这个写法可以通过 k = 0 k=0 k=0的所有特殊情况,和第一个暴力结合一下,可以拿到 70 70 70分。

#include <bits/stdc++.h>
#define A 2510using namespace std;
typedef long long ll;
int n, m, kk, x, y, dis[A][A];
ll a[A], ans;
bool vis[A], mp[A][A];
void dfs(int now, ll sum, int left) {if (now == 1 and left == 0) {ans = max(ans, sum);return;}else if (left == 0) return;for (int i = 1; i <= n; i++) {if (!mp[now][i] or vis[i]) continue;vis[i] = 1;dfs(i, sum + a[i], left - 1);vis[i] = 0;}
}int main(int argc, char const *argv[]) {scanf("%d%d%d", &n, &m, &kk);if (kk == 0) {for (int i = 2; i <= n; i++) scanf("%lld", &a[i]);while (m--) {scanf("%d%d", &x, &y);mp[x][y] = 1; mp[y][x] = 1;}dfs(1, 0, 5);printf("%lld\n", ans);return 0;}kk++;for (int i = 2; i <= n; i++) scanf("%lld", &a[i]);memset(dis, 0x3f, sizeof dis);for (int i = 1; i <= n; i++) dis[i][i] = 0;for (int i = 1; i <= m; i++) {scanf("%d%d", &x, &y);dis[x][y] = 1; dis[y][x] = 1;}for (int k = 1; k <= n; k++)for (int i = 1; i <= n; i++)for (int j = 1; j <= n; j++)dis[i][j] = min(dis[i][j], dis[i][k] + dis[k][j]);for (int i = 2; i <= n; i++) {if (dis[1][i] > kk) continue;for (int j = 2; j <= n; j++) {if (i == j) continue;if (dis[i][j] > kk) continue;for (int k = 2; k <= n; k++) {if (i == k or j == k) continue;if (dis[j][k] > kk) continue;for (int l = 2; l <= n; l++) {if (i == l or j == l or k == l) continue;if (dis[k][l] > kk or dis[l][1] > kk) continue;ans = max(ans, a[i] + a[j] + a[k] + a[l]);}}}}printf("%lld\n", ans);
}

我们要找的一个路径是 1 → A → B → C → D → 1 1\to A\to B\to C\to D\to 1 1ABCD1,可以发现其中 A A A D D D B B B C C C有一些共同之处: A A A D D D的两端一定是起点 1 1 1和一个其它的点,由于道路是双向的,所以可以说 A A A D D D这两个点是等价的; B B B D D D的两端一定是非起点,可以说 B B B C C C这两个点是等价的。这样一来中间不同的四个点被压缩成了两个点。
用一个双重循环枚举 A A A B B B A A A B B B点的特征是 d i s [ 1 ] [ A ] < k dis[1][A]<k dis[1][A]<k d i s [ A ] [ B ] < k dis[A][B]<k dis[A][B]<k,同时满足条件的点 A A A也对应着点 D D D,点 B B B对应着点 C C C。对于所有的点 B B B,找到所有符合条件的点 A A A,符合条件的点 A A A可能有很多,我们只需要存值最大的三个就可以。

为什么是存三个点?
对于路径 1 → A → B → C → D → 1 1\to A\to B\to C\to D\to 1 1ABCD1,假设枚举点 B B B时找到了点 j j j作为 A A A点,枚举点 C C C时找到了点 k k k作为 D D D点,那么 k = j k=j k=j k = B k=B k=B都是有可能发生的,所以要存三个点以防重复。

#include <bits/stdc++.h>using namespace std;
typedef long long ll;
#define A 2510
vector<int> e[A];
ll dis[A][A], ans, a[A];
bool vis[A];
int n, m, k;
void bfs(int start) {memset(vis, 0, sizeof vis); vis[start] = 1;queue<int> q; q.push(start);while (!q.empty()) {int fr = q.front(); q.pop();for (int i = 0; i < (int)e[fr].size(); i++) {int ca = e[fr][i];if (vis[ca]) continue;vis[ca] = 1;if (dis[start][ca] > dis[start][fr] + 1) {dis[start][ca] = dis[start][fr] + 1;q.push(ca);}}}
}
set<pair<ll, int> > s[A];int main(int argc, char const *argv[]) {scanf("%d%d%d", &n, &m, &k); k++;for (int i = 2; i <= n; i++) scanf("%lld", &a[i]);while (m--) {int x, y; scanf("%d%d", &x, &y);e[x].push_back(y); e[y].push_back(x);}for (int i = 1; i <= n; i++)for (int j = 1; j <= n; j++) {dis[i][j] = INT_MAX;if (i == j) dis[i][j] = 0;}for (int i = 1; i <= n; i++) bfs(i);for (int i = 2; i <= n; i++) {for (int j = 2; j <= n; j++)if (i != j and dis[j][i] <= k and dis[1][j] <= k) {s[i].insert(make_pair(a[j], j));if (s[i].size() > 3) s[i].erase(s[i].begin());}}for (int i = 2; i <= n; i++)for (int j = 2; j <= n; j++) {if (dis[i][j] > k or i == j) continue;for (auto k : s[i]) {if (k.second == i or k.second == j) continue;for (auto l : s[j]) {if (l.second == i or l.second == j or l.second == k.second) continue;ans = max(ans, a[i] + a[j] + a[l.second] + a[k.second]);}}}cout << ans << endl;
}
http://www.lryc.cn/news/454075.html

相关文章:

  • 为什么要学习大模型?AI在把传统软件当早餐吃掉?
  • 全流程Python编程、机器学习与深度学习实践技术应用
  • pWnos1.0 靶机渗透 (Perl CGI 的反弹 shell 利用)
  • jquery on() 函数绑定无效
  • 数字化转型与企业创新的双向驱动
  • [uni-app]小兔鲜-07订单+支付
  • Oracle数据库中表压缩的实现方式和特点
  • 【C语言】基础篇
  • Meta MovieGen AI:颠覆性的文本生成视频技术详解
  • 个人文章合集 - 前端相关
  • R语言的下载、安装及环境配置(RstudioVSCode)
  • 解决使用重载后的CustomWidget无法正常显示但原生的QWidget却能正常显示的问题
  • 微服务Sleuth解析部署使用全流程
  • 最具有世界影响力的人颜廷利:全球著名哲学家思想家起名大师
  • Ubuntu22.04 Docker 国内安装最靠谱教程
  • ceph pg rebalance
  • 大模型/Sora/世界模型之间是什么关系,对自动驾驶的意义是什么?
  • 17岁孩子开发AI应用,4个月入百万,人人都是AI产品经理的时代快来了
  • Django一分钟:DRF ViewSet烹饪指南,创建好用的视图集
  • SEO友好的wordpress模板 应该具体哪些特征
  • 1.MySQL存储过程基础(1/10)
  • linux中使用docker命令时提示权限不足
  • Lucene最新最全面试题及参考答案
  • 使用keras-tuner微调神经网络超参数
  • 【ECMAScript 从入门到进阶教程】第三部分:高级主题(高级函数与范式,元编程,正则表达式,性能优化)
  • LabVIEW光偏振态检测系统
  • Linux线程(八)线程与信号之间的关系详解
  • 红帽操作系统Linux基本命令2( Linux 网络操作系统 06)
  • 降重秘籍:如何利用ChatGPT将重复率从45%降至10%以下?
  • sql-labs靶场第九关测试报告