当前位置: 首页 > news >正文

【深度学习】—激活函数、ReLU 函数、 Sigmoid 函数、Tanh 函数

【深度学习】—激活函数、ReLU 函数、 Sigmoid 函数、Tanh 函数

  • 4.1.2 激活函数
    • ReLU 函数
      • 参数化 ReLU
    • Sigmoid 函数
      • 背景
      • 绘制 sigmoid 函数
      • Sigmoid 函数的导数
    • Tanh 函数
      • Tanh 函数的导数
      • 总结

4.1.2 激活函数

激活函数(activation function)用于计算加权和并加上偏置,决定神经元是否被激活。它将输入信号转化为可微的输出,大多数激活函数是非线性的。激活函数是深度学习的基础,下面介绍几种常见的激活函数。

ReLU 函数

最受欢迎的激活函数是修正线性单元(Rectified Linear Unit, ReLU),它实现简单且在各种预测任务中表现优异。ReLU 提供了一种非常简单的非线性变换,定义为:


(4.1.4)

通俗地说,ReLU 通过将负值设为 0,仅保留正数。我们可以通过下列代码绘制 ReLU 函数的曲线来直观感受其行为。正如图中所示,ReLU 是分段线性的。

import torch
from d2l import torch as d2lx = torch.arange(-8.0, 8.0, 0.1, requires_grad=True)
y = torch.relu(x)
d2l.plot(x.detach(), y.detach(), 'x', 'relu(x)', figsize=(5, 2.5))

在这里插入图片描述

当输入为负时,ReLU 的导数为 0;当输入为正时,导数为 1。当输入值精确等于 0 时,ReLU 不可导,但我们通常忽略这种情况,假设导数为 0。我们可以绘制 ReLU 函数的导数曲线。

y.backward(torch.ones_like(x), retain_graph=True)
d2l.plot(x.detach(), x.grad, 'x', 'grad of relu', figsize=(5, 2.5))

在这里插入图片描述

ReLU 的求导性质使得参数要么消失,要么通过,从而优化效果更好,缓解了神经网络中常见的梯度消失问题(将在后续章节介绍)。

参数化 ReLU

ReLU 有许多变体,其中包括参数化 ReLU(Parameterized ReLU, pReLU)。pReLU 为 ReLU 添加了一个线性项,使得即使输入为负,仍有信息可以传递:

pReLU ( x ) = max ⁡ ( 0 , x ) + α min ⁡ ( 0 , x ) . \text{pReLU}(x) = \max(0, x) + \alpha \min(0, x). pReLU(x)=max(0,x)+αmin(0,x).

Sigmoid 函数

对于定义域在 R \mathbb{R} R 中的输入,sigmoid 函数将输入变换为区间 ( 0 , 1 ) (0, 1) (0,1) 上的输出,因此 sigmoid 通常称为挤压函数(squashing function)。它将任意输入压缩到区间 ( 0 , 1 ) (0, 1) (0,1) 中的某个值,定义如下:


(4.1.6)

背景

在早期的神经网络中,科学家们通过 sigmoid 函数模拟生物神经元的激发和非激发。它是阈值单元的平滑可微近似,当输入低于某个阈值时输出接近 0,超过阈值时输出接近 1。由于 sigmoid 的平滑性和可导性,它在基于梯度的学习中得到广泛应用,特别是在将输出视为二元分类问题的概率时,仍然使用 sigmoid 作为输出层的激活函数。

然而,随着 ReLU 函数的引入,sigmoid 在隐藏层中的应用逐渐减少,因为 ReLU 更简单且更易于训练。在后续关于循环神经网络的章节中,我们将探讨如何使用 sigmoid 来控制时序信息流。

绘制 sigmoid 函数

我们可以通过代码绘制 sigmoid 函数曲线。注意,当输入接近 0 时,sigmoid 函数近似线性。

y = torch.sigmoid(x)
d2l.plot(x.detach(), y.detach(), 'x', 'sigmoid(x)', figsize=(5, 2.5))

在这里插入图片描述

Sigmoid 函数的导数

sigmoid 函数的导数公式如下:


(4.1.7)

我们可以通过代码绘制 sigmoid 函数的导数曲线。注意,当输入为 0 时,sigmoid 函数的导数达到最大值 0.25;而当输入远离 0 时,导数逐渐趋近于 0。

# 清除以前的梯度
x.grad.data.zero_()
y.backward(torch.ones_like(x), retain_graph=True)
d2l.plot(x.detach(), x.grad, 'x', 'grad of sigmoid', figsize=(5, 2.5))

在这里插入图片描述

这表明 sigmoid 函数在输入较大或较小时的梯度非常小,这导致在深层网络中可能会出现梯度消失问题。

Tanh 函数

与 sigmoid 函数类似,tanh(双曲正切)函数也可以将输入压缩到区间 ( − 1 , 1 ) (-1, 1) (1,1) 上。tanh 函数的公式如下:


(4.1.8)

我们可以通过代码绘制 tanh 函数。注意,当输入在 0 附近时,tanh 函数接近线性,且函数关于原点对称。

y = torch.tanh(x)
d2l.plot(x.detach(), y.detach(), 'x', 'tanh(x)', figsize=(5, 2.5))

在这里插入图片描述

Tanh 函数的导数

tanh 函数的导数为:


(4.1.9)

当输入接近 0 时,tanh 函数的导数接近最大值 1。类似于 sigmoid 函数,当输入远离 0 时,导数逐渐趋近于 0。我们可以绘制 tanh 函数的导数图像。

# 清除以前的梯度
x.grad.data.zero_()
y.backward(torch.ones_like(x), retain_graph=True)
d2l.plot(x.detach(), x.grad, 'x', 'grad of tanh', figsize=(5, 2.5))

在这里插入图片描述

总结

我们已经了解了如何使用非线性激活函数(如 ReLU、sigmoid 和 tanh)来构建具有更强表达能力的多层神经网络。值得一提的是,如今借助开源的深度学习框架,只需几行代码即可快速构建模型,而在 20 世纪 90 年代,训练这些网络可能需要数千行 C 或 Fortran 代码。

http://www.lryc.cn/news/453779.html

相关文章:

  • 对于基础汇编的趣味认识
  • 网络基础知识笔记(一)
  • fatal: urdf 中的 CRLF 将被 LF 替换
  • 构建electron项目
  • Stable Diffusion绘画 | 插件-Deforum:动态视频生成(中篇)
  • STM32中断——外部中断
  • LeetCode78 子集
  • 《python语言程序设计》2018版第8章19题几何Rectangle2D类(下)-头疼的几何和数学
  • 【C++】入门基础介绍(上)C++的发展历史与命名空间
  • dll动态库加载失败导致程序启动报错以及dll库加载失败的常见原因分析与总结
  • SAP MM学习笔记 - 豆知识10 - OMSY 初期化会计期间,ABAP调用MMPV/MMRV来批量更新会计期间(TODO)
  • Pytorch实现RNN实验
  • 四、Drf认证组件
  • C++:静态成员
  • 28 Vue3之搭建公司级项目规范
  • 【pytorch】张量求导3
  • Servlet——springMvc底层原理
  • Json 在线可视化工具,分享几个
  • LLM | llama.cpp 安装使用(支持CPU、Metal及CUDA的单卡/多卡推理)
  • 矩阵求解复数(aniwoth求解串扰)
  • Redis: Sentinel哨兵监控架构及环境搭建
  • C++ 语言特性30 - 模板介绍
  • 算法笔记(七)——哈希表
  • 【基础算法总结】链表篇
  • 探索路由器静态IP的获取方式
  • Vivado - JTAG to AXI Master (GPIO、IIC、HLS_IP)
  • Java中JWT(JSON Web Token)的运用
  • CSS3练习--电商web
  • Linux 默认内核版本更改
  • 【ubuntu】修改用户名、主机名、主文件夹名、登录名、密码