当前位置: 首页 > news >正文

【Godot4.3】匀速和匀变速直线运动粒子

概述

本篇论述,如何用加速度在Godot中控制粒子运动。

匀速和匀变速直线运动的统一

以下是匀变速运动的速度和位移公式:

v t = v 0 + a t x t = v 0 t + 1 2 a t 2 v_t=v_0 + at \\ x_t=v_0t + \frac{1}{2}at^2 vt=v0+atxt=v0t+21at2

当a = 0 时:

v t = v 0 x t = v 0 t v_t=v_0 \\ x_t=v_0t vt=v0xt=v0t

所以匀速直线运动可以看成是a = 0 的特殊匀变速直线运动,两者可以共用一套公式。

Godot中的匀变速直线运动实现

另外,我们在Godot的_process()或者_physics_process()中得到的delta其实就是 Δ t \Delta t Δt,而不是一个连续累计的时间 t t t

我们需要计算的当前帧基于前一帧的速度和位移,也就是:

v f r a m e = v f r a m e − 1 + a Δ t x f r a m e = v f r a m e − 1 Δ t + 1 2 a Δ t 2 v_{frame} = v_{frame-1} + a \Delta t \\ x_{frame} = v_{frame-1}\Delta t + \frac{1}{2} a {\Delta t}^2 vframe=vframe1+aΔtxframe=vframe1Δt+21aΔt2

其中:

  • v f r a m e v_{frame} vframe表示当前帧的速度, v f r a m e − 1 v_{frame-1} vframe1表示上一帧的速度
  • x f r a m e x_{frame} xframe表示当前帧的位置, x f r a m e − 1 x_{frame-1} xframe1表示上一帧的位置

其实也就是:

Δ v = v f r a m e − v f r a m e − 1 = a Δ t Δ x = x f r a m e − x f r a m e − 1 = v f r a m e − 1 Δ t + 1 2 a Δ t 2 \Delta v = v_{frame} - v_{frame-1} = a \Delta t \\ \Delta x = x_{frame} - x_{frame-1} = v_{frame-1}\Delta t + \frac{1}{2} a {\Delta t}^2 Δv=vframevframe1=aΔtΔx=xframexframe1=vframe1Δt+21aΔt2

所以当前帧:

v f r a m e = v f r a m e − 1 + Δ v x f r a m e = x f r a m e − 1 + Δ x v_{frame} = v_{frame-1} + \Delta v \\ x_{frame} = x_{frame-1} + \Delta x vframe=vframe1+Δvxframe=xframe1+Δx

速度和位移都变成了基于前一帧的累计值,而与初始的速度 v 0 v_0 v0无关,同样加速度a = 0时, Δ v \Delta v Δv=0,当前帧速度保持不变, Δ x = v f r a m e − 1 Δ t \Delta x = v_{frame-1}\Delta t Δx=vframe1Δt,当前帧的位置 = 上一帧位置 + Δ x \Delta x Δx

实现粒子类

基于上面的认识,我们可以编写一个粒子类。它的代码如下,其中update()用于粒子基于_process()或者_physics_process()中得到的delta更新粒子速度和位置,是完全按照上面的思路实现的。

# 粒子
class Particle:var position:Vector2var velocity:Vector2var acceleration:Vector2func _init(position:Vector2,velocity:Vector2,acceleration:Vector2) -> void:self.position = positionself.velocity = velocityself.acceleration = acceleration# 更新速度和位置func update(d_t: float)-> void:var d_v = acceleration * d_tvelocity += d_vposition += velocity * d_t + (d_v * d_t)/2# 绘制粒子func draw_particle(canvas_item:CanvasItem,color:=Color.AQUAMARINE,r:=3.0,fill:=true,border_width:=1):canvas_item.draw_circle(position,r,color,fill,border_width)# 绘制粒子的速度矢量func draw_velocity(canvas_item:CanvasItem,color:=Color.GREEN_YELLOW,border_width:=1):canvas_item.draw_line(position,position+velocity,color,border_width)# 绘制粒子的加速度矢量func draw_acceleration(canvas_item:CanvasItem,color:=Color.ORANGE_RED,border_width:=1):canvas_item.draw_line(position,position+acceleration,color,border_width)

测试代码

extends Node2Dvar pos:Vector2 = Vector2(100,100) # 位置
var v := Vector2()                 # 速度
var a := Vector2.RIGHT * 20        # 加速度# 创建粒子实例
var p = Particle.new(pos,v,a)func _process(delta: float) -> void:p.update(delta) # 更新粒子的速度和位置queue_redraw()  # 请求重绘# 绘制
func _draw() -> void:p.draw_particle(self)     # 绘制粒子p.draw_velocity(self)     # 绘制速度向量p.draw_acceleration(self) # 绘制加速度向量

可以看到:

  • 我们在创建粒子实例时,只需要设定起始位置、初始速度以及加速度就可以了。
  • 程序便会自动随时间更新粒子的速度和位置,并且绘制出粒子、粒子当前的速度以及加速度

通过设定不同的起始位置、初始速度以及加速度,我们就可以模拟出匀速直线运动、匀加速直线运动和匀减速直线运动。

# 匀减速直线运动
var pos:Vector2 = Vector2(100,100) # 起始位置
var v := Vector2.RIGHT * 100       # 初始速度
var a := Vector2.LEFT * 20         # 加速度
# 初速度为0的匀加速直线运动
var pos:Vector2 = Vector2(100,100) # 起始位置
var v := Vector2()                 # 初始速度
var a := Vector2.RIGHT * 20        # 加速度
# 初速度不为0的匀速直线运动
var pos:Vector2 = Vector2(100,100) # 起始位置
var v := Vector2.RIGHT * 100       # 初始速度
var a := Vector2()                 # 加速度

用曲线控制速度和加速度变化

extends Node2D# 匀减速直线运动
var pos:Vector2 = Vector2(300,300) # 起始位置
var v := Vector2.RIGHT * 100       # 初始速度
var a := Vector2.LEFT * 0         # 加速度@export var velocity_curve:Curve# 创建粒子实例
var p = Particle.new(pos,v,a)var offset:= 0.0
var step:=0.005func _process(delta: float) -> void:p.velocity = v * velocity_curve.sample(offset)offset += stepif not(offset <=1.0 and offset >= 0.0):step *= -1p.update(delta) # 更新粒子的速度和位置queue_redraw()# 绘制
func _draw() -> void:p.draw_particle(self,Color.AQUAMARINE,20.0)     # 绘制粒子p.draw_velocity(self)     # 绘制速度向量p.draw_acceleration(self) # 绘制加速度向量

效果:

http://www.lryc.cn/news/453091.html

相关文章:

  • 基于Hive和Hadoop的用电量分析系统
  • 一个简单的摄像头应用程序4
  • SpringBoot使用EasyPoi根据模板导出word or pdf
  • NVIDIA Hopper 架构深入
  • AWS IoT Core for Amazon Sidewalk
  • 今日指数项目项目集成RabbitMQ与CaffienCatch
  • C0005.Clion中移动ui文件到新目录后,报错问题的解决
  • 基于STM32的智能家居灯光控制系统设计
  • 06.useEffect
  • 【设计模式-中介者模式】
  • 树和二叉树知识点大全及相关题目练习【数据结构】
  • ajax的原理,使用场景以及如何实现
  • lock_guard和unique_lock学习总结
  • 数据挖掘-padans初步使用
  • 小阿轩yx-案例:项目发布基础
  • 【HarmonyOS】时间处理Dayjs
  • 论React Native 和 UniApp 的区别
  • 微信小程序处理交易投诉管理,支持多小程序
  • Pikachu-xss防范措施 - href输出 js输出
  • 数据结构双向链表和循环链表
  • go基础面试题汇总第一弹
  • Redis 实现分布式锁时需要考虑的问题
  • 百年极限论一直存在百年糊涂话:有正数小于所有正数
  • 红日靶场1学习笔记
  • 【C++篇】揭开 C++ STL list 容器的神秘面纱:从底层设计到高效应用的全景解析(附源码)
  • 【C#生态园】打造现代化跨平台应用:深度解析.NET桌面应用工具
  • 第二十一章 (动态内存管理)
  • 机器学习框架总结
  • docker pull 超时的问题如何解决
  • 【数学分析笔记】第4章第3节 导数四则运算和反函数求导法则(2)