当前位置: 首页 > news >正文

回溯算法解决排列组合及子集问题

216. 组合总和 III
39. 组合总和
40. 组合总和 II
46. 全排列
47. 全排列 II
77. 组合

78. 子集

90. 子集 II

以上是力扣设计相关问题的题目。排列组合还是子集问题无非就是从序列 nums 中以给定规则取若干元素,主要有以下几类:

  1. 元素无重不可复选,即 nums 中的元素都是唯一的,每个元素最多只能被使用一次,这也是最基本的形式。
  2. 元素可重不可复选,即 nums 中的元素可以存在重复,每个元素最多只能被使用一次。
  3. 元素无重可复选,即 nums 中的元素都是唯一的,每个元素可以被使用若干次。

以组合为例:

1.如果输入 nums = [2,3,6,7],和为 7 的组合应该只有 [7]

2.如果输入 nums = [2,5,2,1,2],和为 7 的组合应该有两种 [2,2,2,1] 和 [5,2]

3.如果输入 nums = [2,3,6,7],和为 7 的组合应该有两种 [2,2,3] 和 [7]

上面用组合问题举的例子,但排列、组合、子集问题都可以有这三种基本形式,所以共有 9 种变化。

除此之外,题目也可以再添加各种限制条件,比如让你求和为 target 且元素个数为 k 的组合,那这么一来又可以衍生出一堆变体,所以一般笔试很喜欢出这种题。

但无论怎么变化,其本质就是穷举所有解,而这些解呈现树形结构,使用回溯算法框架再稍微修改一些细节即可把这些问题一网打尽

回溯算法框架代码如下:

import java.util.ArrayList;
import java.util.List;public class BacktrackExample {private List<List<Object>> result = new ArrayList<>();public void backtrack(List<Object> path, List<Object> choices) {if (满足结束条件(path)) {result.add(new ArrayList<>(path));return;}for (Object choice : choices) {// 做选择path.add(choice);// 递归backtrack(path, choices);// 撤销选择path.remove(path.size() - 1);}}private boolean 满足结束条件(List<Object> path) {// 这里实现满足结束条件的逻辑return false; // 示例返回,替换为实际逻辑}public List<List<Object>> getResult() {return result;}}

问题一:当元素无重不可复选时,即 nums 中的元素都是唯一的,每个元素最多只能被使用一次:

// 组合/子集问题回溯算法框架
void backtrack(int[] nums, int start) {// 回溯算法标准框架for (int i = start; i < nums.length; i++) {// 做选择track.addLast(nums[i]);// 注意参数backtrack(nums, i + 1);// 撤销选择track.removeLast();}
}// 排列问题回溯算法框架
void backtrack(int[] nums) {for (int i = 0; i < nums.length; i++) {// 剪枝逻辑if (used[i]) {continue;}// 做选择used[i] = true;track.addLast(nums[i]);backtrack(nums);// 撤销选择track.removeLast();used[i] = false;}
}

 问题二:元素可重不可复选,即 nums 中的元素可以存在重复,每个元素最多只能被使用一次,其关键在于排序和剪枝

Arrays.sort(nums);
// 组合/子集问题回溯算法框架
void backtrack(int[] nums, int start) {// 回溯算法标准框架for (int i = start; i < nums.length; i++) {// 剪枝逻辑,跳过值相同的相邻树枝if (i > start && nums[i] == nums[i - 1]) {continue;}// 做选择track.addLast(nums[i]);// 注意参数backtrack(nums, i + 1);// 撤销选择track.removeLast();}
}Arrays.sort(nums);
// 排列问题回溯算法框架
void backtrack(int[] nums) {for (int i = 0; i < nums.length; i++) {// 剪枝逻辑if (used[i]) {continue;}// 剪枝逻辑,固定相同的元素在排列中的相对位置if (i > 0 && nums[i] == nums[i - 1] && !used[i - 1]) {continue;}// 做选择used[i] = true;track.addLast(nums[i]);backtrack(nums);// 撤销选择track.removeLast();used[i] = false;}
}

问题三:元素无重可复选,即 nums 中的元素都是唯一的,每个元素可以被使用若干次,只要删掉去重逻辑即可:

// 组合/子集问题回溯算法框架
void backtrack(int[] nums, int start) {// 回溯算法标准框架for (int i = start; i < nums.length; i++) {// 做选择track.addLast(nums[i]);// 注意参数backtrack(nums, i);// 撤销选择track.removeLast();}
}// 排列问题回溯算法框架
void backtrack(int[] nums) {for (int i = 0; i < nums.length; i++) {// 做选择track.addLast(nums[i]);backtrack(nums);// 撤销选择track.removeLast();}
}

只要从树的角度思考,这些问题看似复杂多变,实则改改 base case 就能解决。只要熟悉了该框架,再细致了解一下细节问题,相信排列组合子集问题都不是问题。

http://www.lryc.cn/news/452915.html

相关文章:

  • Unity中Mesh多种网格绘制模式使用方法参考
  • 【Spring Security】基于SpringBoot3.3.4版本②如何配置免鉴权Path
  • 信息学奥赛复赛复习11-CSP-J2020-04方格取数-动态规划、斐波那契数列、最优子结构、重叠子问题、无后效性
  • Hive数仓操作(十二)
  • 计算机毕业设计 基于SpringBoot和Vue的课程教学平台的设计与实现 Java实战项目 附源码+文档+视频讲解
  • 有状态(Session) VS 无状态(Token)
  • 天坑!Spark+Hive+Paimon+Dolphinscheduler
  • JAVA——IO框架
  • 项目管理系统如何实现项目申报流程自动化?
  • ndb9300public-ndb2excel简介
  • C++:const成员
  • 基于ROS的激光雷达点云物体检测
  • 大模型训练环境搭建
  • 使用Java调用GeoTools实现全球国家矢量数据入库实战
  • 计算机毕业设计 基于Python的广东旅游数据分析系统的设计与实现 Python+Django+Vue Python爬虫 附源码 讲解 文档
  • Springboo通过http请求下载文件到服务器
  • 使用CSS实现酷炫加载
  • 【STM32-HAL库】AHT10温湿度传感器使用(STM32F407ZGT6配置i2c)(附带工程下载连接)
  • 深入理解网络通信: 长连接、短连接与WebSocket
  • Linux·环境变量与进程地址空间
  • MYSQL 乐观锁
  • SpringCloud入门(十二)全局过滤器和跨域
  • 51单片机系列-按键检测原理
  • 基于元神操作系统实现NTFS文件操作(五)
  • AutoCAD学习
  • go的一些知识点
  • 前端 vue3 对接科大讯飞的语音在线合成API
  • 缺省参数
  • Stable Diffusion绘画 | 来训练属于自己的模型:炼丹启动
  • 08_OpenCV文字图片绘制