当前位置: 首页 > news >正文

Label-Studio ML利用yolov8模型实现自动标注

引言

Label Studio ML 后端是一个 SDK,用于包装您的机器学习代码并将其转换为 Web 服务器。Web 服务器可以连接到正在运行的 Label Studio 实例,以自动执行标记任务。我们提供了一个示例模型库,您可以在自己的工作流程中使用这些模型,也可以根据需要进行扩展和自定义。

如果您想改为编写自己的模型,请参阅编写自己的 ML 后端。

1、创建后端服务

地址:GitHub - HumanSignal/label-studio-ml-backend: Configs and boilerplates for Label Studio's Machine Learning backend

终端导航至本地仓库目录 :

#用清华的源会快一点
pip install -e . -i https://pypi.tuna.tsinghua.edu.cn/simple
#创建自己的后端服务
label-studio-ml create Stopsign_ml_backend

1.1、环境变量设置

增加环境变量:LABEL_STUDIO_URL,LABEL_STUDIO_API_KEY

LABEL_STUDIO_URL: LS的IP端口号,如:127.0.0.1:8080

LABEL_STUDIO_API_KEY:LS中个人账户的秘钥

1.2、修改model.py文件

实现predict函数,对于目标检测模型:

from typing import List, Dict, Optional
from label_studio_ml.model import LabelStudioMLBase
from label_studio_ml.response import ModelResponse
from label_studio_ml.utils import get_single_tag_keys, get_local_path
import requests, os
from ultralytics import YOLO
from PIL import Image
from io import BytesIOLS_URL = os.environ['LABEL_STUDIO_URL']
LS_API_TOKEN = os.environ['LABEL_STUDIO_API_KEY']class YOLOv8Model(LabelStudioMLBase):"""Custom ML Backend model"""def setup(self):"""Configure any parameters of your model here"""self.set("model_version", "0.0.1")self.from_name, self.to_name, self.value, self.classes = get_single_tag_keys(self.parsed_label_config, 'RectangleLabels', 'Image')self.model = YOLO("D:\\Label-stutio-ml-backend\\Stopsign_ml_backend\\best.pt")self.labels = self.model.namesdef predict(self, tasks: List[Dict], context: Optional[Dict] = None, **kwargs) -> ModelResponse:task = tasks[0]# header = {#     "Authorization": "Token " + LS_API_TOKEN}# image = Image.open(BytesIO(requests.get(#     LS_URL + task['data']['image'], headers=header).content))url = tasks[0]['data']['image']print(f'url is: {url}')image_path = self.get_local_path(url=url,ls_host=LS_URL,task_id=tasks[0]['id'])print(f'image_path: {image_path}')image = Image.open(image_path)original_width, original_height = image.sizepredictions = []score = 0i = 0results = self.model.predict(image,conf=0.5)for result in results:for i, prediction in enumerate(result.boxes):xyxy = prediction.xyxy[0].tolist()predictions.append({"id": str(i),"from_name": self.from_name,"to_name": self.to_name,"type": "rectanglelabels","score": prediction.conf.item(),"original_width": original_width,"original_height": original_height,"image_rotation": 0,"value": {"rotation": 0,"x": xyxy[0] / original_width * 100, "y": xyxy[1] / original_height * 100,"width": (xyxy[2] - xyxy[0]) / original_width * 100,"height": (xyxy[3] - xyxy[1]) / original_height * 100,"rectanglelabels": [self.labels[int(prediction.cls.item())]]}})score += prediction.conf.item()print(f"Prediction Score is {score:.3f}.")    final_prediction = [{"result": predictions,"score": score / (i + 1),"model_version": "v8n"}]return ModelResponse(predictions=final_prediction)def fit(self, event, data, **kwargs):"""This method is called each time an annotation is created or updatedYou can run your logic here to update the model and persist it to the cacheIt is not recommended to perform long-running operations here, as it will block the main threadInstead, consider running a separate process or a thread (like RQ worker) to perform the training:param event: event type can be ('ANNOTATION_CREATED', 'ANNOTATION_UPDATED', 'START_TRAINING'):param data: the payload received from the event (check [Webhook event reference](https://labelstud.io/guide/webhook_reference.html))"""# use cache to retrieve the data from the previous fit() runsold_data = self.get('my_data')old_model_version = self.get('model_version')print(f'Old data: {old_data}')print(f'Old model version: {old_model_version}')# store new data to the cacheself.set('my_data', 'my_new_data_value')self.set('model_version', 'my_new_model_version')print(f'New data: {self.get("my_data")}')print(f'New model version: {self.get("model_version")}')print('fit() completed successfully.')

1.3、启动服务

label-studio-ml start Stopsign_ml_backend -p 9091

2、LS前端配置

在项目设置页面设置模型,打开交互预标注

 在标注页面打开新的图片,出现缓冲条表示在向后台请求预测数据

预测成功如下图所示,会多出一个标注,如果没有则是请求数据错误,请检查后端服务配置

 

这里用的是一个yoloV8-OBB模型,带方向的矩形框,它的Model.py参考这里

 https://download.csdn.net/download/weixin_42253874/89820948

http://www.lryc.cn/news/452680.html

相关文章:

  • 【PostgreSQL】实战篇——用户管理、角色和权限控制的高级用法及技巧
  • Leetcode: 0011-0020题速览
  • Hive数仓操作(七)
  • Redis进阶篇 - 缓存穿透、缓存击穿、缓存雪崩问题及其解决方案
  • 一天认识一个硬件之电源
  • 关于BSV区块链覆盖网络的常见问题解答(上篇)
  • VUE 开发——Node.js学习(一)
  • 角膜移植难题现,传统方式缺陷显,创新水凝胶破局
  • 探索Spring Boot:实现“衣依”服装电商平台
  • 使用 cron 来设置定时任务
  • C# Blazor Server 调用海康H5Player播放摄像头画面
  • CSS实现服务卡片
  • 问:如何判断系统环境是大端/小端存储?
  • 使用NumPy进行线性代数的快速指南
  • uni-app之旅-day02-分类页面
  • 鸿蒙harmonyos next flutter通信之BasicMessageChannel获取app版本号
  • 【文件增量备份系统】MySQL百万量级数据量分页查询性能优化
  • 音视频入门基础:FLV专题(12)——FFmpeg源码中,解析DOUBLE类型的ScriptDataValue的实现
  • 【AI知识点】分层可导航小世界网络算法 HNSW(Hierarchical Navigable Small World)
  • ubuntu图形界面右上角网络图标找回解决办法
  • maven安装本地jar包到本地仓库
  • 1panel申请https/ssl证书自动续期
  • 【C语言】指针篇 | 万字笔记
  • 使用transformers调用owlv2实现开放目标检测
  • 大数据技术:Hadoop、Spark与Flink的框架演进
  • Spring Boot框架下的新闻推荐技术
  • 相亲交友系统的社会影响:家庭结构的变化
  • C++ 内存池(Memory Pool)详解
  • css三角形:css画箭头向下的三角形
  • CSS属性 - animation