当前位置: 首页 > news >正文

迁移学习案例-python代码

在这里插入图片描述

大白话

迁移学习就是用不太相同但又有一些联系的A和B数据,训练同一个网络。比如,先用A数据训练一下网络,然后再用B数据训练一下网络,那么就说最后的模型是从A迁移到B的。

迁移学习的具体形式是多种多样的,比如先用A训练好一个网络,然后复制这个网络的某几个层的参数到一个新的网络作为初始化的参数,然后用B数据去训练这个新网络。又或者,面对中文翻译的问题,中文翻译成英文和中文翻译成火星文,前几层在提取特征,可以共享参数层,后面几层由于任务不同就可以各自私有训练。

案例来源:李宏毅课程-机器学习-迁移学习

A数据:是源数据,量大效果好,并且有标签。
在这里插入图片描述
B数据:量少,没标签。
在这里插入图片描述

目的:希望用A数据先训练网络提取到关键特征,然后预测B数据的标签。但是把他们当作两个任务效果不佳,于是以一种迁移的方法解决--域对抗(先用A训练好模型,再直接用B测试,这样效果不佳;而是希望以一种“迁移”的方法,把A数据的知识拿到B上面用)

直接上代码

import matplotlib.pyplot as pltdef no_axis_show(img, title='', cmap=None):# imshow, 缩放模式为nearest。fig = plt.imshow(img, interpolation='nearest', cmap=cmap)# 不要显示axis。fig.axes.get_xaxis().set_visible(False)fig.axes.get_yaxis().set_visible(False)plt.title(title)titles = ['horse', 'bed', 'clock', 'apple', 'cat', 'plane', 'television', 'dog', 'dolphin', 'spider']
plt.figure(figsize=(18, 18))
for i in range(10):plt.subplot(1, 10, i+1)fig = no_axis_show(plt.imread(f'work/real_or_drawing/train_data/{i}/{500*i}.bmp'), title=titles[i])
plt.figure(figsize=(18, 18))
for i in range(10):plt.subplot(1, 10, i+1)fig = no_axis_show(plt.imread(f'work/real_or_drawing/test_data/0/' + str(i).rjust(5, '0') + '.bmp'))
import cv2
import matplotlib.pyplot as plt
titles = ['horse', 'bed', 'clock', 'apple', 'cat', 'plane', 'television', 'dog', 'dolphin', 'spider']
plt.figure(figsize=(18, 18))original_img = plt.imread(f'work/real_or_drawing/train_data/0/0.bmp')
plt.subplot(1, 5, 1)
no_axis_show(original_img, title='original')gray_img = cv2.cvtColor(original_img, cv2.COLOR_RGB2GRAY)
plt.subplot(1, 5, 2)
no_axis_show(gray_img, title='gray scale', cmap='gray')gray_img = cv2.cvtColor(original_img, cv2.COLOR_RGB2GRAY)
plt.subplot(1, 5, 2)
no_axis_show(gray_img, title='gray scale', cmap='gray')canny_50100 = cv2.Canny(gray_img, 50, 100)
plt.subplot(1, 5, 3)
no_axis_show(canny_50100, title='Canny(50, 100)', cmap='gray')canny_150200 = cv2.Canny(gray_img, 150, 200)
plt.subplot(1, 5, 4)
no_axis_show(canny_150200, title='Canny(150, 200)', cmap='gray')canny_250300 = cv2.Canny(gray_img, 250, 300)
plt.subplot(1, 5, 5)
no_axis_show(canny_250300, title='Canny(250, 300)', cmap='gray')
import cv2
import numpy as np
import paddleimport paddle.optimizer as optim
from paddle.io import DataLoader
from paddle.vision.datasets import DatasetFolder
from paddle.nn import Sequential, Conv2D, BatchNorm1D, BatchNorm2D, ReLU, MaxPool2D, Linear
from paddle.vision.transforms import Compose, Grayscale, Transpose, RandomHorizontalFlip, RandomRotation, Resize, ToTensor
class Canny(paddle.vision.transforms.transforms.BaseTransform):def __init__(self, low, high, keys=None):super(Canny, self).__init__(keys)self.low = lowself.high = highdef _apply_image(self, img):Canny = lambda img: cv2.Canny(np.array(img), self.low, self.high)return Canny(img)
source_transform = Compose([RandomHorizontalFlip(),RandomRotation(15),Grayscale(),Canny(low=170, high=300),# Transpose(),ToTensor()])
target_transform = Compose([Grayscale(),Resize((32, 32)),RandomHorizontalFlip(),RandomRotation(15, fill=(0,)),ToTensor()])source_dataset = DatasetFolder('work/real_or_drawing/train_data', transform=source_transform)
target_dataset = DatasetFolder('work/real_or_drawing/test_data', transform=target_transform)source_dataloader = DataLoader(source_dataset, batch_size=32, shuffle=True)
target_dataloader = DataLoader(target_dataset, batch_size=32, shuffle=True)
test_dataloader = DataLoader(target_dataset, batch_size=128, shuffle=False)
class FeatureExtractor(paddle.nn.Layer):def __init__(self):super(FeatureExtractor, self).__init__()self.conv = Sequential(Conv2D(1, 64, 3, 1, 1),BatchNorm2D(64),ReLU(),MaxPool2D(2),Conv2D(64, 128, 3, 1, 1),BatchNorm2D(128),ReLU(),MaxPool2D(2),Conv2D(128, 256, 3, 1, 1),BatchNorm2D(256),ReLU(),MaxPool2D(2),Conv2D(256, 256, 3, 1, 1),BatchNorm2D(256),ReLU(),MaxPool2D(2),Conv2D(256, 512, 3, 1, 1),BatchNorm2D(512),ReLU(),MaxPool2D(2))def forward(self, x):x = self.conv(x).squeeze()return xclass LabelPredictor(paddle.nn.Layer):def __init__(self):super(LabelPredictor, self).__init__()self.layer = Sequential(Linear(512, 512),ReLU(),Linear(512, 512),ReLU(),Linear(512, 10),)def forward(self, h):c = self.layer(h)return cclass DomainClassifier(paddle.nn.Layer):def __init__(self):super(DomainClassifier, self).__init__()self.layer = Sequential(Linear(512, 512),BatchNorm1D(512),ReLU(),Linear(512, 512),BatchNorm1D(512),ReLU(),Linear(512, 512),BatchNorm1D(512),ReLU(),Linear(512, 512),BatchNorm1D(512),ReLU(),Linear(512, 1),)def forward(self, h):y = self.layer(h)return y
feature_extractor = FeatureExtractor()
label_predictor = LabelPredictor()
domain_classifier = DomainClassifier()class_criterion = paddle.nn.loss.CrossEntropyLoss()
domain_criterion = paddle.nn.BCEWithLogitsLoss()optimizer_F = optim.Adam(parameters=feature_extractor.parameters())
optimizer_C = optim.Adam(parameters=label_predictor.parameters())
optimizer_D = optim.Adam(parameters=domain_classifier.parameters())
def train_epoch(source_dataloader, target_dataloader, lamb):'''Args:source_dataloader: source data的dataloadertarget_dataloader: target data的dataloaderlamb: 调控adversarial的loss系数。'''# D loss: Domain Classifier的loss# F loss: Feature Extrator & Label Predictor的loss# total_hit: 计算目前对了几笔 total_num: 目前经过了几笔running_D_loss, running_F_loss = 0.0, 0.0total_hit, total_num = 0.0, 0.0for i, ((source_data, source_label), (target_data, _)) in enumerate(zip(source_dataloader, target_dataloader)):# source_data = source_data.cuda()# source_label = source_label.cuda()# target_data = target_data.cuda()# 我们把source data和target data混在一起,否则batch_norm可能会算错 (两边的data的mean/var不太一样)mixed_data = paddle.concat([source_data, target_data], axis=0)domain_label = paddle.zeros([source_data.shape[0] + target_data.shape[0], 1])# 设定source data的label为1domain_label[:source_data.shape[0]] = 1# Step 1 : 训练Domain Classifierfeature = feature_extractor(mixed_data)# 因为我们在Step 1不需要训练Feature Extractor,所以把feature detach避免loss backprop上去。domain_logits = domain_classifier(feature.detach())# print('domain_logits.shape:', domain_logits.shape, 'domain_label.shape:', domain_label.shape)loss = domain_criterion(domain_logits, domain_label)# running_D_loss+= loss.numpy()[0]running_D_loss+= loss.numpy()# print('loss:', loss)loss.backward()optimizer_D.step()# Step 2 : 训练Feature Extractor和Domain Classifierclass_logits = label_predictor(feature[:source_data.shape[0]])domain_logits = domain_classifier(feature)# loss为原本的class CE - lamb * domain BCE,相减的原因同GAN中的Discriminator中的G loss。loss = class_criterion(class_logits, source_label) - lamb * domain_criterion(domain_logits, domain_label)# running_F_loss+= loss.numpy()[0]running_F_loss+= loss.numpy()loss.backward()optimizer_F.step()optimizer_C.step()optimizer_D.clear_grad()optimizer_F.clear_grad()optimizer_C.clear_grad()# print('class_logits.shape:', class_logits.shape, 'source_label.shape:', source_label.shape)# print('class_logits[0]:', class_logits[0], 'source_label[0]:', source_label[0])total_hit += np.sum((paddle.argmax(class_logits, axis=1) == source_label).numpy())total_num += source_data.shape[0]print(i, end='\r')return running_D_loss / (i+1), running_F_loss / (i+1), total_hit / total_num# 训练200 epochs
for epoch in range(200):train_D_loss, train_F_loss, train_acc = train_epoch(source_dataloader, target_dataloader, lamb=0.1)paddle.save(feature_extractor.state_dict(), f'extractor_model.pdparams')paddle.save(label_predictor.state_dict(), f'predictor_model.pdparams')print('epoch {:>3d}: train D loss: {:6.4f}, train F loss: {:6.4f}, acc {:6.4f}'.format(epoch, train_D_loss, train_F_loss, train_acc))

训练结束,预测一波

result = []
label_predictor.eval()
feature_extractor.eval()
for i, (test_data, _) in enumerate(test_dataloader):test_data = test_dataclass_logits = label_predictor(feature_extractor(test_data))x = paddle.argmax(class_logits, axis=1).detach().numpy()result.append(x)import pandas as pd
result = np.concatenate(result)# Generate your submission
df = pd.DataFrame({'id': np.arange(0,len(result)), 'label': result})
df.to_csv('work/DaNN_submission.csv',index=False)

训练比较慢,还得是把代码转到cuda上才行,demo可以把epoch减小一点。

http://www.lryc.cn/news/450254.html

相关文章:

  • MCUboot 和 U-Boot区别
  • Apache OFBiz SSRF漏洞CVE-2024-45507分析
  • 计算机毕业设计 饮食营养管理信息系统的设计与实现 Java实战项目 附源码+文档+视频讲解
  • 828华为云征文|华为云Flexus云服务器X实例部署——盲盒抽奖商城系统以及编译发布小程序
  • 优化理论及应用精解【12】
  • excel 填充内容的公式
  • 这款工具在手,前端开发轻松搞定!
  • Hadoop三大组件之HDFS(一)
  • 基于Hadoop的NBA球员大数据分析及可视化系统
  • docker容器安装nginx
  • LC记录一:寻找旋转数组最小值、判断旋转数组是否存在给定元素
  • 关于 JVM 个人 NOTE
  • 网络工程和信息安全专业应该考哪些证书?
  • ASP.NET Core 创建使用异步队列
  • 从Linux系统的角度看待文件-基础IO
  • 总结之Coze 是一站式 AI Bot 开发平台——工作流使用及coze总结(三)
  • 汽车线束之故障诊断方案-TDR测试
  • 自己做个国庆75周年头像生成器
  • 2k1000LA loongnix 安装java
  • 中信银行西安分行:构建科技金融体质 做好科技金融“大文章”
  • Linux系统性能调优技巧详解
  • MFC工控项目实例之十九手动测试界面输出信号切换
  • 数据结构——栈的基本操作
  • Chainlit集成LlamaIndex实现知识库高级检索(组合对象检索)
  • 万界星空科技铜拉丝行业MES系统,实现智能化转型
  • ECCV 2024 现场:参会者付高价、跨万里,却无法入场?
  • 使用rsync+jenkins实现服务自动部署全流程
  • python 实现decision tree决策树算法
  • 前端大模型入门:实战篇之Vue3+Antdv+transformers+本地模型实现增强搜索
  • 《向量数据库指南》——Fivetran 的 Partner SDK:构建自定义连接器和目标