当前位置: 首页 > news >正文

两个向量所在平面的法线,外积,叉积,行列式

偶尔在一个数学题里面看到求两向量所在平面的法线,常规方法可以通过法线与两向量垂直这一特点,列两个方程求解;另外一种方法可以通过求解两个向量的叉积,用矩阵行列式 (determinant) 的方式,之前还没见过,在这篇博客里记录下。

两个向量的叉积(cross product),又称作外积,表达式为:

a × b = ∥ a ∥ ∥ b ∥ sin ⁡ θ \mathbf{a}\times\mathbf{b}=\|a\|\|b\|\sin\theta a×b=a∥∥bsinθ

它的几何意义就是这两个向量所在平面的法线,其中 θ \theta θ 为两向量的夹角,法线的长度为这两个向量形成的平行四边形的面积。(两个向量点积的表达式为: a ⋅ b = ∥ a ∥ ∥ b ∥ cos ⁡ θ \mathbf{a}\cdot\mathbf{b}=\|a\|\|b\|\cos\theta ab=a∥∥bcosθ

  • 叉积本质上是一个几何运算,用来构造一个垂直于两个给定向量的向量,并且其长度为两个向量所构成的平行四边形的面积
    在这里插入图片描述
    向量叉积的方向根据右手定则确定。

具体在求解上,求解矩阵行列式非常方便,假如为三维向量,
a × b = ∣ i j k a 1 a 2 a 3 b 1 b 2 b 3 ∣ = ( a 2 b 3 − a 3 b 2 ) i + ( a 3 b 1 − a 1 b 3 ) k + ( a 1 b 2 − a 2 b 1 ) k \mathbf{a}\times\mathbf{b}= \begin{vmatrix} i&j&k\\ a_1&a_2&a_3\\ b_1&b_2&b_3\\ \end{vmatrix}=(a_2b_3-a_3b_2)i+(a_3b_1-a_1b_3)k+(a_1b_2-a_2b_1)k a×b= ia1b1ja2b2ka3b3 =(a2b3a3b2)i+(a3b1a1b3)k+(a1b2a2b1)k

其中, i , j , k i,j,k i,j,k 为叉积所在坐标系各个坐标轴的单位向量。因此,根据上面的计算,叉积向量可以表示为:

( a 2 b 3 − a 3 b 2 , a 3 b 1 − a 1 b 3 , a 1 b 2 − a 2 b 1 ) \big(a_2b_3-a_3b_2,~~ a_3b_1-a_1b_3, ~~a_1b_2-a_2b_1\big) (a2b3a3b2,  a3b1a1b3,  a1b2a2b1)

为什么可以这样求?这跟叉积,点积以及行列式,余子式的几何意义有关。(其实有点复杂)

  • 三个向量行列式的几何意义是这三个向量形成的平行六面体的体积,

在这里插入图片描述

  • 两个向量行列式的几何意义是这两个向量形成的平行四边形的面积
  • 计算行列式的展开就是把整个三维体积拆解为不同的二维平行四边形的面积和相应方向上的高度的加权和

∣ i j k a 1 a 2 a 3 b 1 b 2 b 3 ∣ = ∣ a 2 a 3 b 2 b 3 ∣ i + ∣ a 1 a 3 b 1 b 3 ∣ j + ∣ a 1 a 2 b 1 b 2 ∣ k (1) \begin{vmatrix} i&j&k\\ a_1&a_2&a_3\\ b_1&b_2&b_3\\ \end{vmatrix}=\begin{vmatrix}a_2&a_3\\b_2&b_3\end{vmatrix}i+\begin{vmatrix}a_1&a_3\\b_1&b_3\end{vmatrix}j+\begin{vmatrix}a_1&a_2\\b_1&b_2\end{vmatrix}k\tag{1} ia1b1ja2b2ka3b3 = a2b2a3b3 i+ a1b1a3b3 j+ a1b1a2b2 k(1)

  • 三个向量组成的平行多面体有一个体积公式
    V = ∣ c ⋅ ( a × b ) ∣ V=|\mathbf{c}\cdot(\mathbf{a}\times \mathbf{b})| V=c(a×b)

将向量 c \mathbf{c} c 看成 ( i , j , k ) (i,j,k) (i,j,k)

而叉积向量 a × b \mathbf{a}\times \mathbf{b} a×b 看成 ( ∣ a 2 a 3 b 2 b 3 ∣ , ∣ a 1 a 3 b 1 b 3 ∣ , ∣ a 1 a 2 b 1 b 2 ∣ ) (\begin{vmatrix}a_2&a_3\\b_2&b_3\end{vmatrix},~~\begin{vmatrix}a_1&a_3\\b_1&b_3\end{vmatrix},~~\begin{vmatrix}a_1&a_2\\b_1&b_2\end{vmatrix}) ( a2b2a3b3 ,   a1b1a3b3 ,   a1b1a2b2 ), 可以得到公式 (1),因此可以使用行列式来计算叉积!

http://www.lryc.cn/news/450213.html

相关文章:

  • C++之 友元重载 以及最常用的几种友元函数
  • 动态规划(3)——dp多状态问题Ⅰ
  • 在Mac电脑上安装adb环境
  • 分糖果C++
  • Spring中如何为静态变量注入值
  • HTML5实现唐朝服饰网站模板源码
  • ESXI识别USB设备
  • 视频美颜SDK与直播美颜工具API是什么?计算机视觉技术详解
  • not exist 解决一对多 场景 条件过滤问题
  • 解决$‘r‘ command not found或者文件夹显示’tvsf 33‘$‘r‘
  • linux:详解nohup命令
  • 负载箱:充电桩测试利器
  • Ubuntu 开机自启动 .py / .sh 脚本,可通过脚本启动 roslaunch/roscore等
  • RabbitMQ 消息队列:生产者与消费者实现详解
  • vue3项目中组件切换不起作用
  • YOLOv11改进策略【损失函数篇】| Slide Loss,解决简单样本和困难样本之间的不平衡问题
  • 动静态库(Linux)
  • 51单片机和ARM单片机的区别
  • [Day 81] 區塊鏈與人工智能的聯動應用:理論、技術與實踐
  • flac格式怎么转mp3?关于flac转为MP3的方法介绍
  • 【笔记】KaiOS 系统框架和应用结构(APP界面逻辑)
  • java项目实现钉钉异常告警实时监控
  • Spring Boot应用:电子商务平台开发
  • 怎么在Vue3项目中引入Vant组件库并使用?
  • springboot中有哪些方式可以解决跨域问题
  • Temporal Dynamic Quantization for Diffusion Models阅读
  • 828华为云征文|华为云Flexus X实例性能实测:速度与稳定性的完美结合
  • 【PyTorch】图像分割
  • 如何快速建立自己的异地互联的远程视频监控系统,通过web浏览器可以直接查看公网上的监控视频(上)
  • 实验2思科网院项目2.7.2-packet-tracer---configure-single-area-ospfv2---实践练习