当前位置: 首页 > news >正文

pytorch千问模型源码分析


# 规范化技术,旨在替代传统的 Layer Normalization(LN)
# 核心思想是对输入张量的每个样本的每个特征进行规范化,使其均值为 0,方差为 1
class Qwen2RMSNorm(nn.Module):
    def __init__(self, hidden_size, eps=1e-6): # 隐藏层的大小
        super().__init__()
        # 一个可学习的权重参数,初始化为全 1 张量。
        self.weight = nn.Parameter(torch.ones(hidden_size))
        # 用于防止除零错误的小常数。
        self.variance_epsilon = eps
    def forward(self, hidden_states):
        # 记录输入张量的数据类型,以便最终转换回原始类型。
        input_dtype = hidden_states.dtype
        # 转换为 torch.float32 类型,以确保数值稳定性。
        hidden_states = hidden_states.to(torch.float32)
        # 计算每个样本的方差
        variance = hidden_states.pow(2).mean(-1, keepdim=True)
        # 计算每个样本的 RMS 值,并对每个样本进行规范化
        hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
        # 应用可学习的权重,其中 γγ 是一个可学习的参数,用于缩放规范化后的张量。
        return self.weight * hidden_states.to(input_dtype)
# 用于生成旋转位置嵌入。这种嵌入方法在 Transformer 模型中用于捕捉序列中的位置信息,尤其适用于长序列任务。
# 通过旋转的方式将位置信息编码到嵌入向量中。具体步骤如下:
# 生成频率:通过指数函数生成一系列频率值。计算正弦和余弦:利用生成的频率计算正弦和余弦值
# ,旋转嵌入:将输入向量按一定规则旋转,以嵌入位置信息。
class Qwen2RotaryEmbedding(nn.Module):
    def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
        super().__init__()
        self.dim = dim
        # 最大位置嵌入的长度,默认为 2048,base:基数,默认为 10000。。
        self.max_position_embeddings = max_position_embeddings
        self.base = base
        # inv_freq:计算频率的逆值。
        # 位置列表先归一化(从绝对位置变成相对位置),之后取指数(1--接近10000),之后取倒数,位置从1--越来越小
        inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim))
        # register_buffer:将 inv_freq 注册为缓冲区,以便在模型保存和加载时保持不变。
        # register_buffer 方法用于注册一个非训练的缓冲区(buffer),这意味着它不会被梯度更新。当你使用 register_buffer 注册一个缓
        # 冲区时,它会被保存在模型的状态字典(state dict)中,并且在模型保存和加载时也会被序列化。
        # persistent=True:缓冲区会出现在模型的状态字典中,并且会被序列化和加载。
        # persistent=False:缓冲区不会出现在模型的状态字典中,但在实际保存和加载时,仍然会被序列化并加载。
        self.register_buffer("inv_freq", inv_freq, persistent=False)
        # Build here to make `torch.jit.trace` work.生成正弦和余弦缓存
        self._set_cos_sin_cache(
            seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
        )
    def _set_cos_sin_cache(self, seq_len, device, dtype):
        self.max_seq_len_cached = seq_len
        # t 是一个包含位置索引的张量,形状为 (seq_len,)。
        t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq)
        # torch.outer:计算外积,得到一个形状为 (seq_len, dim/2) 的张量
        freqs = torch.outer(t, self.inv_freq) # 计算频率。
        # Different from paper, but it uses a different permutation in order to obtain the same calculation
        # 拼接频率。emb 的形状为 (seq_len, dim)。
        # 在旋转位置嵌入(RoPE)中,我们通常将嵌入向量分为两个部分,并分别应用正弦和余弦变换。具体来说:
        # 对于每个位置 tt,计算频率 ff,得到一个形状为 (seq_len, dim/2) 的张量。
        # 将频率张量拼接两次,得到一个形状为 (seq_len, dim) 的张量。
        # 这样做的原因是,我们将嵌入向量分为两部分,每部分对应一个频率值。
        emb = torch.cat((freqs, freqs), dim=-1)
        # cos_cached 和 sin_cached:注册正弦和余弦缓存。
        self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
        self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
    def forward(self, x, seq_len=None): # x:输入张量。
        # x: [bs, num_attention_heads, seq_len, head_size]
        # 如果 seq_len 大于已缓存的最大长度,则重新生成缓存。
        if seq_len > self.max_seq_len_cached:
            self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
        return ( # 返回正弦和余弦缓存的切片。
            self.cos_cached[:seq_len].to(dtype=x.dtype),
            self.sin_cached[:seq_len].to(dtype=x.dtype),
        )

class Qwen2MLP(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.hidden_size = config.hidden_size # d
        self.intermediate_size = config.intermediate_size # hd
        self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) # d-->hd
        self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)# d-->hd
        self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) # hd-->d
        self.act_fn = ACT2FN[config.hidden_act]
    def forward(self, hidden_state): # (h,s,d)
        # 门控信号生成:gate_proj(hidden_state) 生成门控信号
        # 特征调整:gate_output 与 up_output 相乘,将门控信号应用于特征表示。
        # 门控机制的作用:通过门控信号动态调整哪些特征应该通过哪些特征应该被抑制。
        # 激活函数的选择:如果 config.hidden_act 是 "sigmoid",那么激活函数将是 sigmoid
        return self.down_proj(self.act_fn(self.gate_proj(hidden_state)) * self.up_proj(hidden_state))

class Qwen2Attention(nn.Module):
    def __init__(self, config: Qwen2Config, layer_idx: Optional[int] = None):
        super().__init__() # 调用父类的初始化方法
        self.config = config # 配置类实例
        self.layer_idx = layer_idx # 层索引
        if layer_idx is None:
            logger.warning_once(
                f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
                "to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
                "when creating this class."
            )
        
        self.hidden_size = config.hidden_size # d
        self.num_heads = config.num_attention_heads # q_h
        self.head_dim = self.hidden_size // self.num_heads # dk
        self.num_key_value_heads = config.num_key_value_heads # kv_h
        self.num_key_value_groups = self.num_heads // self.num_key_value_heads # 比例
        self.max_position_embeddings = config.max_position_embeddings # p
        self.rope_theta = config.rope_theta # base
        self.is_causal = True # 是否用因果掩码
        self.attention_dropout = config.attention_dropout # dropout
        # 嵌入维度必须能被整除
        if (self.head_dim * self.num_heads) != self.hidden_size:
            raise ValueError(
                f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
                f" and `num_heads`: {self.num_heads})."
            )
        # 线性投影
        self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=True)
        #需要注意的是这里的投影维度可能和q的投影维度不同
        self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True)
        self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True)
        # 最后一个线性转换层
        self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
        # 旋转位置嵌入层
        self.rotary_emb = Qwen2RotaryEmbedding(
            self.head_dim, # dk
            max_position_embeddings=self.max_position_embeddings,# max_position
            base=self.rope_theta, # base
        )
    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,# 可选
        position_ids: Optional[torch.LongTensor] = None,# 可选
        past_key_value: Optional[Cache] = None, # 可选参数:缓存
        output_attentions: bool = False,# 是否输出注意力权重
        use_cache: bool = False, # 是否使用缓存
        cache_position: Optional[torch.LongTensor] = None, # 缓存位置
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
        bsz, q_len, _ = hidden_states.size() # b,s,d
        # 投影
        query_states = self.q_proj(hidden_states)
        key_states = self.k_proj(hidden_states)
        value_states = self.v_proj(hidden_states)
        # (b,q_len,q_h,dk)-->(b,q_h,q_len,dk),transpose:换轴(转置)
        query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
        # (b,k_h,k_len,dk)
        key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
        value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
        kv_seq_len = key_states.shape[-2] # k_len
        # 缓存上个时间步的key,value表示
        if past_key_value is not None: # 如果设置了缓存
            if self.layer_idx is None: # 就必须有layer_idx,不然报错
                raise ValueError(
                    f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
                    "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
                    "with a layer index."
                )
            kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
        # 旋转位置嵌入,传kv_len
        # 键/值序列长度:kv_seq_len 是键和值向量的长度,这是因为键和值向量代表的是相同的序列。
        # 查询序列长度:q_len 是查询向量的长度,这可能不同于键/值向量的长度。
        # 旋转位置嵌入:在计算旋转位置嵌入时,使用键/值序列长度是为了确保位置信息与键和值向量一致。
        cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
        # 返回带位置信息的嵌入表示
        query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
        # 如果past_key_value is not None
        if past_key_value is not None:
            cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}  # Specific to RoPE models
            # 更新
            key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
        # repeat k/v heads if n_kv_heads < n_heads
        # 如果键值头数量少于查询头数量,则重复键值头以匹配查询头数量。
        key_states = repeat_kv(key_states, self.num_key_value_groups)
        value_states = repeat_kv(value_states, self.num_key_value_groups)
        # (b,q_h,q_len,dk)@(b,k_h,dk,k_len)-->(b,h,q_len,k_len)
        attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
        if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
            raise ValueError(
                f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
                f" {attn_weights.size()}"
            )
        # 切片,在最后一个维度切出q_len的长度
        if attention_mask is not None:  # no matter the length, we just slice it
            causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
            # 相加,一般遮挡的地方是很大的负数
            attn_weights = attn_weights + causal_mask
        # upcast attention to fp32
        # 在q_len上归一化,得到query序列中每个token对应key中token的一系列权重,这些权重中较大的值表示和当前query中的token
        # 相似度较近,较小的表示离当前query中token较远
        attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
        # dropout
        attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
        # (b,h,q_len,k_len)@(b,h,v_len,dk)-->(b,h,q_len,dk)
        attn_output = torch.matmul(attn_weights, value_states)
        if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
            raise ValueError(
                f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
                f" {attn_output.size()}"
            )
        # (b,h,q_len,dk)-->(b,h,q_len,h,dk),之后.contiguous()转为内存连续存储
        attn_output = attn_output.transpose(1, 2).contiguous()
        # (b,h,q_len,h,dk)-->(b,h,d)
        attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
        # 最后经过线性转换
        attn_output = self.o_proj(attn_output)
        # 不输出注意力权重
        if not output_attentions:
            attn_weights = None
        # 返回多头注意力的输出,注意力权重,上个时间步的key_value的缓存
        return attn_output, attn_weights, past_key_value

http://www.lryc.cn/news/448434.html

相关文章:

  • 滚雪球学SpringCloud[1.3]:SpringCloud环境搭建
  • 9.28今日错题解析(软考)
  • 【Vue】以RuoYi框架前端为例,ElementUI封装图片上传组件——将图片信息转成base64后提交到后端保存
  • 【Linux】驱动的基本架构和编译
  • 1013. 将数组分成和相等的三个部分 数组切分
  • 【深度学习】—— 自动微分、非标量变量的反向传播、 分离计算、 Python控制流的梯度计算
  • Java项目实战II基于Java+Spring Boot+MySQL的大学城水电管理系统(源码+数据库+文档)
  • Vue 组件的三大组成部分详解
  • 深入理解Java内部类
  • fiddler抓包12_篡改请求(请求前断点)
  • Webpack和GuIp打包原理以及不同
  • c++与Python用笛卡尔的心形函数输出爱心
  • Mybatis 9种动态 sql 标签使用
  • OpenHarmony(鸿蒙南向)——平台驱动开发【PIN】
  • 南平自闭症寄宿制学校:让孩子自信绽放
  • 汽车总线之---- LIN总线
  • Android开发MPAndroidChart两条折线图
  • HTML-ES6.0核心技术
  • 车间调度问题数学建模与CPLEX优化
  • < 基础物理 >
  • 【web开发】Spring Boot 快速搭建Web项目(三)
  • 无人机之战斗机的详解!
  • Verilog基础:时序调度中的竞争(四)(描述时序逻辑时使用非阻塞赋值)
  • 嵌入式边缘计算软硬件开发“1+X”考证建设方案
  • ES8的Java API client 8.0 简单示例操作 Elasticsearch
  • 多线程CompletableFuture
  • AR传送门+特定区域显示内容+放大镜 效果着色器使用
  • 设置Hadoop守护进程的JVM参数
  • 可视化大屏
  • pytest框架