当前位置: 首页 > news >正文

6.8方框滤波

基本概念

方框滤波(Box Filter)是一种基本的图像处理技术,用于对图像进行平滑处理模糊效果。它通过在图像上应用一个固定大小的方框核(通常是矩形),计算该区域内像素值的平均值来替换中心像素的值。这种方式简单且计算效率高,但在处理边界时需要特别注意。

方框滤波(Box Filter)是一种简单的线性滤波器,它可以用于平滑图像或降低噪声。方框滤波器使用一个均匀加权的矩形核来对图像进行卷积,从而实现图像的平滑处理。在OpenCV中,方框滤波可以使用 boxFilter 函数来实现。

函数原型
在OpenCV中,方框滤波可以通过boxFilter函数实现。函数原型如下:

void boxFilter(InputArray src, OutputArray dst, int ddepth, Size ksize, Point anchor=Point(-1,-1), bool normalize=true, int borderType=BORDER_DEFAULT);
参数说明
src: 输入图像,可以是单通道或多通道图像。
dst: 输出图像,将具有与输入图像相同的尺寸,但深度取决于ddepth参数。
ddepth: 输出图像的深度。常见的选择有:-1: 输出图像深度与输入图像相同。CV_8U: 8位无符号整数。CV_16S: 16位有符号整数。CV_32F: 32位浮点数。CV_64F: 64位浮点数。
ksize: 方框核的大小,指定为一个Size对象,例如Size(3, 3)。
anchor: 核的锚点位置,默认为Point(-1,-1),表示锚点在核的中心。
normalize: 是否归一化。如果设置为true(默认值),则输出的每个像素将是核内所有像素值的平均值;如果设置为false,则输出的每个像素将是核内所有像素值的总和。
borderType: 边界处理类型。常见的边界处理方式有:BORDER_CONSTANT: 使用常数值填充边界外区域。BORDER_REPLICATE: 复制边界像素。BORDER_REFLECT: 镜像反射边界。BORDER_WRAP: 边界环绕(类似于纹理坐标)。BORDER_REFLECT_101 或 BORDER_DEFAULT: 默认的边界反射方式。

使用示例1

下面是一个详细的示例,展示如何使用boxFilter函数来进行图像平滑处理。

步骤一:包含必要的头文件
#include <opencv2/opencv.hpp>
#include <iostream>
using namespace cv;
using namespace std;步骤二:加载图像
int main(int argc, char** argv)
{Mat src = imread("path_to_your_image.jpg", IMREAD_COLOR);if (src.empty()){cout << "Error: Image cannot be loaded!" << endl;return -1;}步骤三:定义输出图像Mat dst;步骤四:应用方框滤波// 设置方框核的大小Size ksize(5, 5);  // 5x5的核// 应用方框滤波boxFilter(src, dst, -1, ksize, Point(-1,-1), true);
在这里,-1表示输出图像的深度与输入图像相同。true表示启用归一化,即输出的每个像素值将是核内所有像素值的平均值。步骤五:显示结果namedWindow("Original Image", WINDOW_AUTOSIZE);imshow("Original Image", src);namedWindow("Blurred Image", WINDOW_AUTOSIZE);imshow("Blurred Image", dst);waitKey(0);return 0;
}注意事项
归一化: 如果normalize参数设置为true,则输出图像中的每个像素值将是核内所有像素值的平均值。如果设置为false,则输出图像中的每个像素值将是核内所有像素值的总和。在某些情况下,不归一化的结果可能会导致像素值溢出。
边界处理: 方框滤波在处理图像边界时可能会出现问题,特别是当核的大小超过边界时。选择适当的边界处理方式可以帮助解决这些问题。
性能: 方框滤波是一种简单快速的滤波方法,但由于它在每个像素上都执行了累加操作,因此在处理大尺寸核时可能会消耗较多资源。对于大型核,可以考虑使用积分图(integral image)来加速计算。通过上述步骤,你可以使用OpenCV的boxFilter函数来对图像进行平滑处理或实现模糊效果。

#include <opencv2/opencv.hpp>
#include <iostream>
using namespace cv;
using namespace std;int main(int argc, char** argv)
{Mat src = imread("880.jpeg", IMREAD_COLOR);if (src.empty()){cout << "Error: Image cannot be loaded!" << endl;return -1;}Mat dst;// 设置方框核的大小Size ksize(5, 5);  // 5x5的核// 应用方框滤波boxFilter(src, dst, -1, ksize, Point(-1, -1), true);namedWindow("Original Image", WINDOW_NORMAL);imshow("Original Image", src);namedWindow("Blurred Image", WINDOW_NORMAL);imshow("Blurred Image", dst);waitKey(0);return 0;
}注意事项
归一化: 如果normalize参数设置为true,则输出图像中的每个像素值将是核内所有像素值的平均值。如果设置为false,则输出图像中的每个像素值将是核内所有像素值的总和。在某些情况下,不归一化的结果可能会导致像素值溢出。
边界处理: 方框滤波在处理图像边界时可能会出现问题,特别是当核的大小超过边界时。选择适当的边界处理方式可以帮助解决这些问题。
性能: 方框滤波是一种简单快速的滤波方法,但由于它在每个像素上都执行了累加操作,因此在处理大尺寸核时可能会消耗较多资源。对于大型核,可以考虑使用积分图(integral image)来加速计算。通过上述步骤,你可以使用OpenCV的boxFilter函数来对图像进行平滑处理或实现模糊效果。

运行结果1

示例代码2

示例代码下面是一个使用OpenCV C++实现方框滤波的示例代码:#include <iostream>
#include <opencv2/opencv.hpp>using namespace std;
using namespace cv;void applyBoxFilter(const Mat &src, Mat &dst, Size ksize, bool normalize) 
{boxFilter(src, dst, -1, ksize, Point(-1, -1), normalize);
}int main(int argc, char** argv) 
{/*if (argc != 2) {cout << "Usage: ./BoxFilter <Image Path>" << endl;return -1;}*/// 加载图像Mat img = imread("559.jpg", IMREAD_GRAYSCALE);if (!img.data) {cout << "Error opening image" << endl;return -1;}// 定义核大小Size ksize(5, 5);  // 核大小// 初始化输出矩阵Mat filtered;// 应用方框滤波applyBoxFilter(img, filtered, ksize, true);// 显示结果namedWindow("Original Image", WINDOW_NORMAL);imshow("Original Image", img);namedWindow("Filtered Image", WINDOW_NORMAL);imshow("Filtered Image", filtered);waitKey(0);destroyAllWindows();return 0;
}代码解释
1. 加载图像:使用 imread 函数加载图像。
2. 定义核大小:设置方框滤波器的核大小。
3. 初始化输出矩阵:创建一个新的矩阵来存储滤波后的图像。
4. 应用方框滤波:使用 boxFilter 函数应用方框滤波。
5. 显示结果:使用 imshow 函数显示原始图像和滤波后的图像。

运行结果2

方框滤波的应用

方框滤波器常用于以下场景:

•图像平滑:通过平均相邻像素值来减少图像中的噪声。

•均值滤波:当 normalize 参数为 true 时,方框滤波器相当于均值滤波器。

•非归一化的方框滤波:当 normalize 参数为 false 时,可以用于特殊的图像处理任务,例如累积求和。

非归一化的方框滤波示例

非归一化的方框滤波不将权重归一化,这意味着每个像素的权重保持不变。这在某些特殊情况下是有用的,例如累积求和(Integral Images)。

#include <opencv2/opencv.hpp>
#include <iostream>
using namespace cv;
using namespace std;void applyNonNormalizedBoxFilter(const Mat &src, Mat &dst, Size ksize)
{boxFilter(src, dst, -1, ksize, Point(-1, -1), false);
}int main(int argc, char** argv)
{//if (argc != 2)//{//	cout << "Usage: ./NonNormalizedBoxFilter <Image Path>" << endl;//	return -1;//}// 加载图像Mat img = imread("559.jpg", IMREAD_GRAYSCALE);if (!img.data){cout << "Error opening image" << endl;return -1;}// 定义核大小Size ksize(5, 5);  // 核大小// 初始化输出矩阵Mat filtered;// 应用非归一化的方框滤波applyNonNormalizedBoxFilter(img, filtered, ksize);// 显示结果namedWindow("Original Image", WINDOW_NORMAL);imshow("Original Image", img);namedWindow("Non-Normalized Filtered Image", WINDOW_NORMAL);imshow("Non-Normalized Filtered Image", filtered);waitKey(0);destroyAllWindows();return 0;
}

运行结果3

性能优化

方框滤波器的计算可以通过积分图像(Integral Images)来加速。积分图像是一种预先计算的数据结构,可以高效地计算任意矩形区域的和。OpenCV提供了 integral 函数来计算积分图像。

积分图像示例

积分图像可以用来高效地实现方框滤波。

#include <opencv2/opencv.hpp>
#include <iostream>
using namespace cv;
using namespace std;void applyBoxFilterUsingIntegral(const Mat &src, Mat &dst, Size ksize) 
{Mat integralImg;integral(src, integralImg);int radius = ksize.width / 2;for (int y = radius; y < src.rows - radius; ++y) {for (int x = radius; x < src.cols - radius; ++x) {int top_left = integralImg.at<int>(y - radius, x - radius);int top_right = integralImg.at<int>(y - radius, x + radius);int bottom_left = integralImg.at<int>(y + radius, x - radius);int bottom_right = integralImg.at<int>(y + radius, x + radius);int sum = bottom_right + top_left - top_right - bottom_left;dst.at<uchar>(y, x) = static_cast<uchar>(sum / (ksize.width * ksize.height));}}
}int main(int argc, char** argv) 
{if (argc != 2) {cout << "Usage: ./BoxFilterUsingIntegral <Image Path>" << endl;return -1;}// 加载图像Mat img = imread(argv[1], IMREAD_GRAYSCALE);if (!img.data){cout << "Error opening image" << endl;return -1;}// 定义核大小Size ksize(5, 5);  // 核大小// 初始化输出矩阵Mat filtered = Mat::zeros(img.size(), img.type());// 应用方框滤波applyBoxFilterUsingIntegral(img, filtered, ksize);// 显示结果imshow("Original Image", img);imshow("Filtered Image Using Integral", filtered);waitKey(0);destroyAllWindows();return 0;
}

运行结果4

总结

通过这些示例,你应该能够理解如何在OpenCV中使用C++实现方框滤波。方框滤波器是一个简单但有效的工具,可用于图像平滑和噪声减少。

http://www.lryc.cn/news/448193.html

相关文章:

  • 携手SelectDB,观测云实现性能与成本的双重飞跃
  • Redis 五大基本数据类型及其应用场景进阶(缓存预热、雪崩 、穿透 、击穿)
  • 如何在ChatGPT的帮助下,使用“逻辑回归”技巧完成论文写作?
  • MySQL 临时表
  • 个人文章汇总(算法原理算法题)
  • 基于Hive和Hadoop的图书分析系统
  • 阿里rtc云端录制TypeScript版NODE运行
  • Web后端开发原理!!!什么是自动配置???什么是起动依赖???
  • 2-105 基于matlab的GA-WNN预测算法
  • GPT-o1模型实测:论文选题没思路,ChatGPT-o1带你飞!
  • OpenCV视频I/O(2)视频采集类VideoCapture之检索视频流的各种属性函数get()的使用
  • 基于SpringBoot的学生宿舍管理系统【附源码】
  • 【开源免费】基于SpringBoot+Vue.JS新闻推荐系统(JAVA毕业设计)
  • 【每天学个新注解】Day 8 Lombok注解简解(七)—@Getter(lazy=true)
  • 打造备份一体机,群晖科技平台化战略再进阶
  • Sharding-JDBC笔记03-分库分表代码示例
  • 气膜健身馆:提升运动体验与健康的理想选择—轻空间
  • 选择更轻松:山海鲸可视化与PowerBI的深度对比
  • Python Daphne库:ASGI服务的高效Web服务器
  • 如何保护自己电脑以及服务器的ip地址
  • 我的创作纪念日---256days
  • 前端大模型入门:Transformer.js 和 Xenova-引领浏览器端的机器学习变革
  • 计算机性能指标之MFLOPS
  • Sharp.js:简单而又实用的图像处理库
  • Rust环境安装配置
  • 衡石分析平台系统管理手册-功能配置之全局 JS 设置
  • OpenHarmony(鸿蒙南向)——平台驱动开发【MIPI DSI】
  • C++_一篇文章让你弄懂各类(运算符)
  • 顺序表算法题 —— 移除元素、删除有序数组中的重复项、合并两个有序数组
  • 配置ssh后又报错git@github.com: Permission denied (publickey)