当前位置: 首页 > news >正文

回归预测 | Matlab基于SO-SVR蛇群算法优化支持向量机的数据多输入单输出回归预测

回归预测 | Matlab基于SO-SVR蛇群算法优化支持向量机的数据多输入单输出回归预测

目录

    • 回归预测 | Matlab基于SO-SVR蛇群算法优化支持向量机的数据多输入单输出回归预测
      • 预测效果
      • 基本描述
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本描述

1.Matlab基于SO-SVR蛇群算法优化支持向量机的数据多输入单输出回归预测(完整源码和数据)

2.选择最佳的SVM核函数参数c和g;

3.多特征输入单输出的回归预测。程序内注释详细,excel数据,直接替换数据就可以用。

4.程序语言为matlab,程序可出预测效果图,迭代优化图,相关分析图,运行环境matlab2020b及以上。评价指标包括:R2、RPD、MSE、RMSE、MAE、MAPE等。

5.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。

在这里插入图片描述

程序设计

  • 完整程序和数据获取方式资源处下载Matlab基于SO-SVR蛇群算法优化支持向量机的数据多输入单输出回归预测。
%%  参数设置
%%  优化算法
[Best_score,Best_pos, curve] = SO(pop, Max_iteration, lb, ub, dim, fun); %%  获取最优参数
bestc = Best_pos(1, 1);  
bestg = Best_pos(1, 2); %%  建立模型
cmd = [' -t 2 ', ' -c ', num2str(bestc), ' -g ', num2str(bestg), ' -s 3 -p 0.01 '];
model = svmtrain(t_train, p_train, cmd);%%  仿真预测
[t_sim1, error_1] = svmpredict(t_train, p_train, model);
[t_sim2, error_2] = svmpredict(t_test , p_test , model);%%  数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);
T_sim1 =T_sim1';
T_sim2 =T_sim2';
%%  适应度曲线
figure;
plot(1 : length(curve), curve, 'LineWidth', 1.5);
title('适应度曲线', 'FontSize', 13);
xlabel('迭代次数', 'FontSize', 13);
ylabel('适应度值', 'FontSize', 13);
grid
set(gcf,'color','w')%%  相关指标计算
%%  均方根误差
toc
%% 测试集结果
figure;
plotregression(T_test,T_sim2,['回归图']);
set(gcf,'color','w')
figure;
ploterrhist(T_test-T_sim2,['误差直方图']);
set(gcf,'color','w')
%%  均方根误差 RMSE
error1 = sqrt(sum((T_sim1 - T_train).^2)./M);
error2 = sqrt(sum((T_test - T_sim2).^2)./N);%%
%决定系数
R1 = 1 - norm(T_train - T_sim1)^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test -  T_sim2)^2 / norm(T_test -  mean(T_test ))^2;%%
%均方误差 MSE
mse1 = sum((T_sim1 - T_train).^2)./M;
mse2 = sum((T_sim2 - T_test).^2)./N;
%%
%RPD 剩余预测残差
SE1=std(T_sim1-T_train);
RPD1=std(T_train)/SE1;SE=std(T_sim2-T_test);
RPD2=std(T_test)/SE;
%% 平均绝对误差MAE
MAE1 = mean(abs(T_train - T_sim1));
MAE2 = mean(abs(T_test - T_sim2));
%% 平均绝对百分比误差MAPE
MAPE1 = mean(abs((T_train - T_sim1)./T_train));
MAPE2 = mean(abs((T_test - T_sim2)./T_test));

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229

http://www.lryc.cn/news/446832.html

相关文章:

  • 光耦知识分享:如何挑选合适的可控硅光耦型号
  • MySql Explain优化命令使用
  • Android NestedScrollView+TabLayout+ViewPager+ 其它布局,ViewPager 不显示以及超出屏幕不显示问题
  • Linux开机logo设置
  • webpack插件开发 模拟vue系统登录后,获取a标签下的文件
  • 大规模数据处理:分库分表与数据迁移最佳实践
  • TCP网络编程概述、相关函数、及实现超详解
  • Cluade 3.5 Sonnet 提示词泄露
  • git clone代码报错Permission denied (publickey)
  • QT设计中文输入法软键盘DLL给到C#开发步骤
  • 使用 Rust 和 wasm-pack 开发 WebAssembly 应用
  • 1. IP地址介绍
  • 喜报来袭~又有一波优秀企业选择Smartbi
  • Web端云剪辑解决方案,BS架构私有化部署,安全可控
  • AI 代码助手插件推荐
  • word中的表格全部设置宽度100%
  • JFinal整合Websocket
  • (done) 声音信号处理基础知识(7) (Understanding Time Domain Audio Features)
  • 拓数派荣获上海数据交易所“数据治理服务商”认证
  • 【Redis】分布式锁之 Redission
  • 对象序列化
  • 什么是专利开放许可?
  • 地表最强开源大模型!Llama 3.2,如何让你的手机变身私人智能助理
  • Pandas中DataFrame表格型数据结构
  • C++的智能指针
  • 微信小程序showLoading ,showToast ,hideLoading连续调用出现showLoading 不关闭的情况记录
  • OpenFeign使用详解
  • CSS clip-path 属性的使用
  • PHP 函数
  • NCEloss与InfoNCEloss的区别