当前位置: 首页 > news >正文

AI学习指南深度学习篇-Adadelta的Python实践

AI学习指南深度学习篇-Adadelta的Python实践

深度学习是人工智能领域的一个重要分支,近年来在各个领域都取得了显著的成就。在深度学习的模型训练中,优化算法起着至关重要的作用,其中Adadelta是一种常用的优化算法之一。本篇博客将使用Python中的深度学习库(TensorFlow、PyTorch等)演示如何使用Adadelta进行模型训练。

什么是Adadelta

Adadelta是由Google Research的Matthew D. Zeiler提出的一种自适应学习率的优化算法。它旨在解决传统梯度下降算法中学习率需要手动调整的问题。Adadelta通过动态调整学习率,并利用累积的平方梯度的对角线均值,来自适应地调整模型参数,从而使得训练更加有效。

Adadelta的实现

TensorFlow实现

首先,我们来看看如何在TensorFlow中使用Adadelta进行模型训练。下面是一个简单的示例,演示了如何使用Adadelta优化算法来训练一个简单的神经网络模型。

import tensorflow as tf# 加载数据集
mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0# 构建神经网络模型
model = tf.keras.models.Sequential([tf.keras.layers.Flatten(input_shape=(28, 28)),tf.keras.layers.Dense(128, activation="relu"),tf.keras.layers.Dropout(0.2),tf.keras.layers.Dense(10)
])# 编译模型
model.compile(optimizer="Adadelta",loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),metrics=["accuracy"])# 训练模型
model.fit(x_train, y_train, epochs=5)

在上面的代码中,我们首先加载了MNIST数据集,然后构建了一个简单的神经网络模型。通过调用model.compile方法指定了优化算法为Adadelta,并指定了损失函数和评估指标。最后,调用model.fit方法开始训练模型。

PyTorch实现

接下来,我们看看如何在PyTorch中使用Adadelta进行模型训练。下面是一个简单的示例,演示了如何使用PyTorch中的Adadelta优化器来训练一个神经网络模型。

import torch
import torch.nn as nn
import torch.optim as optim# 加载数据集
mnist = torchvision.datasets.MNIST(root="./data", train=True, transform=transforms.ToTensor(), download=True)
train_loader = torch.utils.data.DataLoader(mnist, batch_size=64, shuffle=True)# 构建神经网络模型
class Net(nn.Module):def __init__(self):super(Net, self).__init__()self.fc1 = nn.Linear(784, 128)self.fc2 = nn.Linear(128, 10)def forward(self, x):x = x.view(-1, 784)x = torch.relu(self.fc1(x))x = self.fc2(x)return xmodel = Net()# 定义优化器
optimizer = optim.Adadelta(model.parameters())# 定义损失函数
criterion = nn.CrossEntropyLoss()# 训练模型
for epoch in range(5): for data, target in train_loader:optimizer.zero_grad() output = model(data)loss = criterion(output, target)loss.backward()optimizer.step()

在上面的代码中,我们首先加载了MNIST数据集,并构建了一个简单的神经网络模型。然后,通过创建一个Adadelta优化器对象optim.Adadelta和一个交叉熵损失函数对象nn.CrossEntropyLoss,来定义优化器和损失函数。最后,编写一个简单的训练循环,使用Adadelta优化器对模型进行训练。

调参过程

在实际应用中,调参是优化算法的关键部分。Adadelta有几个重要的超参数需要调整,包括rhoepsilon等。调参的过程往往是一个反复迭代的过程,需要根据模型的具体情况和数据集的特点来选取合适的超参数值。

以下是一个简单的调参过程示例:

# 调参过程示例
optimizer = optim.Adadelta(model.parameters(), rho=0.9, eps=1e-6)

在上面的示例中,我们通过传入rho=0.9eps=1e-6来设置Adadelta优化器的超参数值。当然,这只是一个简单的示例,实际调参过程可能需要更多的实验和调整。

总结

本篇博客介绍了在Python中使用深度学习库(TensorFlow、PyTorch等)演示如何使用Adadelta进行模型训练的过程。通过实际的代码示例,展示了在TensorFlow和PyTorch中使用Adadelta优化算法的方法。同时,还介绍了Adadelta的调参过程,希望能帮助读者更好地理解和应用这一优化算法。如果想进一步深入学习和实践,建议读者多尝试不同的超参数组合,多做实验,从而提高模型的训练效果。

http://www.lryc.cn/news/445588.html

相关文章:

  • go webapi上传文件 部属到linux
  • 接口加解密及数据加解密
  • 开创远程就可以监测宠物健康新篇章
  • 二叉树的基本概念(上)
  • aws s3 存储桶 前端组件上传简单案例
  • 【开源免费】基于SpringBoot+Vue.JS墙绘产品展示交易平台(JAVA毕业设计)
  • python爬虫初体验(四)—— 百度文库PPT的爬取
  • 下水道内缺陷识别检测数据集 yolo数据集 共2300张
  • 年轻用户对Facebook的使用趋势分析
  • EasyCVR全方位安全守护智慧电厂:构建高效视频监控系统优势分析
  • 基于深度学习的情感生成与交互
  • JavaScript匿名函数
  • 线性判别分析(LDA)中计算两个类的中心点在投影方向w上的投影示例
  • 前端知识——标签知识
  • 使用Docker和cpolar在Linux服务器上搭建DashDot监控面板
  • 解决docker拉取镜像报错
  • C++之STL—deque容器
  • leveldb前缀匹配查找Seek
  • 【自动驾驶】ros如何隔绝局域网内其他电脑播包
  • MySQL程序
  • 吉林省自闭症寄宿学校:提供个性化培养方案
  • Java基础 — Java 虚拟机(上篇)
  • C++ | Leetcode C++题解之第435题无重叠区间
  • AI编辑器CURSOR_CURSOR安装教程_使用AI进行编码的最佳方式。
  • 华为HarmonyOS灵活高效的消息推送服务(Push Kit) -- 10 推送实况窗消息
  • 探索 Go 语言程序实体:揭开神秘面纱
  • 深入理解端口、端口号及FTP的基本工作原理
  • 9.3 Linux_文件I/O_相关函数
  • 点亮一个LED灯
  • 分布式框架 - ZooKeeper