当前位置: 首页 > news >正文

Anaconda配置Python新版本tensorflow库(CPU、GPU通用)的方法

  本文介绍在Anaconda环境中,下载并配置Python中机器学习、深度学习常用的新版tensorflow库的方法。

  在之前的两篇文章基于Python TensorFlow Estimator的深度学习回归与分类代码——DNNRegressor(https://blog.csdn.net/zhebushibiaoshifu/article/details/114001720)与基于Python TensorFlow Keras的深度学习回归代码——keras.Sequential深度神经网络(https://blog.csdn.net/zhebushibiaoshifu/article/details/114016531)中,我们介绍了利用Python中的tensorflow库,实现机器学习深度学习的具体思路与代码实现;然而,当初并没有具体介绍tensorflow库的配置方法。因此,在这篇文章中,我们就介绍一下在Anaconda环境中,配置tensorflow库的详细方法;此外,这里需要注意,在最新的tensorflow库(版本大于1.5)中,已经同时支持CPUGPU训练,不需要再区分是配置CPU版本的库还是GPU版本的库了。

  首先,和Anaconda环境配置其他库一样,我们需要打开Anaconda Prompt软件;如下图所示。

在这里插入图片描述

  随后,将会弹出如下所示的终端窗口。

在这里插入图片描述

  接下来,我们即可开始tensorflow库的配置。由于我这里希望将tensorflow库配置到另一个已有的Anaconda虚拟环境中(这个虚拟环境的名称为py36tfPython版本是3.6的),而不是当前这个默认的base环境,因此需要按照文章Anaconda中Python虚拟环境的创建、使用与删除(https://blog.csdn.net/zhebushibiaoshifu/article/details/128334614)中提到的方法,首先进入这个名称为py36tf的虚拟环境中,如下图所示。

在这里插入图片描述

  如果大家需要在默认的环境中配置tensorflow库,直接执行接下来的操作即可;如果大家希望新建一个环境来配置tensorflow库,那么参考上文提及的文章Anaconda中Python虚拟环境的创建、使用与删除(https://blog.csdn.net/zhebushibiaoshifu/article/details/128334614),创建并进入一个新的虚拟环境,再继续执行接下来的操作即可。

  接下来,继续输入如下的代码,即可立即开始配置tensorflow库。

pip install --upgrade tensorflow

  运行上述代码后,可以看到将立即开始tensorflow库的配置,如下图所示。其中,由于我这里Python版本是3.6的,而不是最新的Python版本,因此从下图可以看到tensorflow库版本也并不是最新的,而是2.6.2版本的——当然对我而言,这也就足够了。如果大家希望用最新版本的tensorflow库,需要注意同时使用最新的Python版本。

在这里插入图片描述

  此外,这里有必要提一句——如果我用如下所示的代码进行tensorflow库的配置,配置得到的tensorflow库则是1.X版本的,而不是上面我们刚刚得到的是2.X版本,始终无法获取最新版本的tensorflow库;且之后无论怎么更新tensorflow库,都会出现报错信息。

conda install tensorflow

  例如,在我的电脑上,如果运行上述代码,则结果如下图所示。

在这里插入图片描述

  不知道具体是哪里的问题,从上图可以看到这种方法得到的tensorflow库始终是1.X版本(例如上图中显示tensorflow库就是1.2.1版本的)。所以,如果大家需要比较新版本的tensorflow库,还是建议用前面提到的pip install --upgrade tensorflow这句代码来实现。

  让我们继续回到前述tensorflow库配置的工作中;稍等片刻,一般情况下即可完成tensorflow库的配置。这里需要注意,如果此时大家出现如下图所示的报错,则说明tensorflow库暂时还是没有配置成功。

在这里插入图片描述

  这种情况是由于pip版本不够高导致的,因此我们需要通过如下所示的代码将pip升级。

python -m pip install --upgrade pip

  输入上述代码,如下图所示。

在这里插入图片描述

  运行这一代码后,我们重新运行一次pip install --upgrade tensorflow这句代码即可。可是在我这里,重新运行这句代码后,又出现了如下图所示的问题。

在这里插入图片描述

  通过检查,发现网络代理的问题;将代理关闭后,即可解决问题(但是很奇怪,不知道为什么刚刚没有报这个错误,重新运行这句代码后才出现这样的错误)。最终,得到结果界面如下图所示。

在这里插入图片描述

  接下来,我们可以输入如下的代码,从而检查tensorflow库是否已经配置成功。

python -c "import tensorflow as tf;print(tf.reduce_sum(tf.random.normal([1000, 1000])))"

  如下图所示,如果最终得到了一个tf.Tensor结果,即可说明我们的tensorflow库终于配置完毕了。

在这里插入图片描述

  至此,大功告成。当然,到这里或许也不算完全成功——从上图可以看到,当前tensorflow库并没有进行GPU计算。如果大家的电脑上没有GPU,或者不需要用GPU加以计算,那就不用管这个问题,相当于已经完全成功了,后续直接开始用tensorflow库进行各类深度学习的应用即可;但是对于电脑上有GPU,并且也希望让GPU加入计算的用户而言,则按照文章新版本GPU加速的tensorflow库的配置方法(https://fkxxgis.blog.csdn.net/article/details/129291170)中所述的方法加以配置即可。

欢迎关注:疯狂学习GIS

http://www.lryc.cn/news/43942.html

相关文章:

  • 加载模型时出现 OSError: Unable to load weights from pytorch checkpoint file 报错的解决
  • sessionStorage , localStorage 和cookie的区别
  • C# 实例详解委托之Func、Action、delegate
  • 如何选电脑
  • SpringBoot项目创建
  • 神经衰弱该如何判断?确诊为神经衰弱,日常要做好这7大护理!
  • Linux之进程替换
  • 关于清除浮动
  • Uber H3 index 地图索引思考
  • 多线程的几种状态
  • 【算法题】1574. 删除最短的子数组使剩余数组有序
  • 理解对数——金融问题中的自然对数(以e为底的对数)
  • vue2进阶学习之路
  • 决策树ID3算法
  • C++模板基础(一)
  • 生产者消费者模型线程池(纯代码)
  • K8s 应用的网络可观测性: Cilium VS DeepFlow
  • 3.29面试题
  • 操作系统漏洞发现
  • Linux gdb调试底层原理
  • LC-1647. 字符频次唯一的最小删除次数(哈希+计数)
  • HTTP状态码
  • 【Linux】初见“which命令”,“find命令”以及linux执行命令优先级
  • update case when 多字段,多条件, mysql中case when用法
  • mysql隐式转换 “undefined“字符串匹配到mysql int类型0值字段
  • Redis八股文
  • InnoDB——详细解释锁的应用,一致性读,自增长与外键
  • C++模板基础(四)
  • pycharm使用记录
  • Linux命令·kill·killall